Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T11:24:33.839Z Has data issue: false hasContentIssue false

Note on Burde's Rational Biquadratic Reciprocity Law

Published online by Cambridge University Press:  20 November 2018

Kenneth S. Williams*
Affiliation:
Carleton University Ottawa, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A short proof is given of a biquadratic reciprocity law proved by Burde in 1969.

Let p and q be primes ≡1 (mod 4) such that (p | q) = (q | p) = 1. Then there are integers a, b, c, d with

Set

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Bachmann, P., Die Lehre von der Kreisteilung, Leipzig (1872), equation (9), p. 169.Google Scholar
2. Burde, K., Ein rationales biquadratisches Reziprozitätsgesetz, Jour, reine angew. Math., 235 (1969), 175-184.Google Scholar
3. Dörrie, H., Das quadratische Reciprocitätsgesetz in quadratischen Zahlkörper mit der Classenzahl 1, Gott. Diss., 1898.Google Scholar
4. Lehmer, E., Criteria for cubic and quartic residuacity, Mathematika 5 (1958), 20-29.Google Scholar
5. Lehmer, E., On the quadratic character of some quadratic surds, Jour, reine angew. Math., 250 (1971), 42-48.Google Scholar