Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T13:31:59.833Z Has data issue: false hasContentIssue false

Normalization of Closed Ekedahl—Oort Strata

Published online by Cambridge University Press:  20 November 2018

Jean-Stefan Koskivirta*
Affiliation:
Department of Mathematics, Imperial College, London, e-mail : [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We apply our theory of partial flag spaces developed with W. Goldring to study a group-theoretical generalization of the canonical filtration of a truncated Barsotti–Tate group of level 1. As an application, we determine explicitly the normalization of the Zariski closures of Ekedahl–Oort strata of Shimura varieties of Hodge-type as certain closed coarse strata in the associated partial flag spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[ABD+66] Artin, M., Bertin, J. E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., and Serre, J.-P., SGA3: Schemas en groupes. In: Seminaire de Geometrie Algebrique de PInstitut des Hautes Etudes, Second ed., Institut des Hautes Etudes Scientifiques, Paris, 1963/1964.Google Scholar
[Boxl5] Boxer, G., Torsion in the coherent cohomology of Shimura varieties and Galois representations. Ph.D. thesis, Harvard University, Cambridge, MA, USA, 2015.Google Scholar
[Car93] Carter, R. W., Finite groups of Lie type. Conjugacy classes and complex characters. Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993.Google Scholar
[DM91] Digne, F. and Michel, J., Representations of finite groups ofLie type. London Mathematical Society Student Texts, 21, Cambridge University Press, Cambridge, 1991. http://dx.doi.Org/10.1017/CBO9781139172417Google Scholar
[EvdG09] Ekedahl, T. and Geer, G. van der, Cyde classes ofthe E-O stratification on the moduli of abelian varieties. In: Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, Vol. 1, Progress in Math., 269, Birhäuser Boston, Boston, MA, 2009, pp. 567636. http://dx.doi.Org/10.1007/978-0-8176-4745-2J3Google Scholar
[GKa] Goldring, W. and Koskivirta, J.-S., Strata Hasse invariants, Hecke algebras and Galois representations. arxiv:15O7.O5O32v2Google Scholar
[GKb] Goldring, W. and Koskivirta, J.-S., Zip stratifications of flag Spaces and functoriaüty. arxiv:1608.01504Google Scholar
[MooOl] Moonen, B., Group schemes with additional structures and Weylgroup cosets. In: Moduli of abelian varieties (Texel Island, 1999), Progr. Math., 195, Birkhäuser, Basel, 2001, pp. 255298.Google Scholar
[MW04] Moonen, B. and Wedhorn, T., Discrete invariants of varieties in positive characteristic. Int. Math. Res. Not. 2004, no. 72, 3855-3903. http://dx.doi.org/10.1155/S1073792804141263Google Scholar
[OorOl] Oort, F., A stratification ofa moduli Space of abelian varieties. In: Moduli of abelian varieties (Texel Island, 1999), Progr. Math., 195, Birkhäuser, Basel, 2001, pp. 345416. http://dx.doi.Org/10.1007/978-3-0348-8303-0J3Google Scholar
[PWZ11] Pink, R., Wedhorn, T., and Ziegler, P., Algebraic zip data. Doc. Math. 16(2011), 253300.Google Scholar
[PWZ15] Pink, R., Wedhorn, T., and Ziegler, P., F-zips with additional structure. Pacific J. Math. 274(2015), no. 1, 183236. http://dx.doi.org/10.2140/pjm.2015.274.183Google Scholar
[Wedl4] Wedhorn, T., Bruhat strata and F-zips with additional structure. Münster J. Math. 7(2014), no. 2, 529556.Google Scholar
[Zha] Zhang, C., Ekedahl-Oort strata for good reductions of Shimura varieties of Hodge type. Canad. J. Math, to appear. http://dx.doi.Org/10.4153/CJM-2O17-020-5Google Scholar