Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T07:01:12.497Z Has data issue: false hasContentIssue false

Nondegeneracy for Lie Triple Systems and Kantor Pairs

Published online by Cambridge University Press:  20 November 2018

Esther García
Affiliation:
Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain e-mail: [email protected]
Miguel Gómez Lozano
Affiliation:
Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain e-mail: [email protected]
Erhard Neher
Affiliation:
Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, K1N 6N5 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the transfer of nondegeneracy between Lie triple systems and their standard Lie algebra envelopes as well as between Kantor pairs, their associated Lie triple systems, and their Lie algebra envelopes. We also show that simple Kantor pairs and Lie triple systems in characteristic 0 are nondegenerate.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Allison, B. N. and Faulkner, J. R., Elementary groups and invertibility for Kantor pairs. Comm. Algebra 27(1999), no. 2, 519556. doi:10.1080/00927879908826447Google Scholar
[2] Benkart, G. and Smirnov, O., Lie algebras graded by the root system BC1 . J. Lie Theory 13(2003), no. 1, 91132.Google Scholar
[3] Martín, A. J. Calderón and Piulestán, M. F., Inheritance of primeness by ideals in Lie triple systems. In: Algebras, rings and their representations, World Sci. Publ., Hackensack, NJ, 2006, pp. 716.Google Scholar
[4] López, A. Fernández, García, E., and Lozano, M. Gómez, The Jordan socle and finitary Lie algebras. J. Algebra 280(2004), no. 2, 635654.Google Scholar
[5] López, A. Fernández, García, E., The Jordan algebras of a Lie algebra. J. Algebra 308(2007), no. 1, 164177.Google Scholar
[6] García, E. and Lozano, M. Gómez, Jordan systems of Martindale-like quotients. J. Pure Appl. Algebra 194(2004), no. 1–2, 127145. doi:10.1016/j.jpaa.2004.04.001Google Scholar
[7] García, E. and Lozano, M. Gómez, An elemental characterization of strong primeness in Lie algebras. J. Algebra 312(2007), no. 1, 132141. doi:10.1016/j.jalgebra.2006.11.003Google Scholar
[8] Grishkov, A. N., Local nilpotency of an ideal of a Lie algebra generated by second-order elements. (Russian) Sibirsk. Mat. Zh. 23(1982), no. 1, 181182, 222.Google Scholar
[9] Jacobson, N., Structure and representations of Jordan algebras. American Mathematical Society Colloquium Publications, XXXIX, American Mathematical Society, Providence, RI, 1968.Google Scholar
[10] Kantor, I. L., Certain generalizations of Jordan algebras. (Russian) Trudy Sem. Vektor. Tenzor. Anal. 16(1972), 407499.Google Scholar
[11] Kantor, I. L., Models of the exceptional Lie algebras. (Russian) Dokl. Akad. Nauk SSSR 208(1973), 12761279.Google Scholar
[12] Lister, W. G., A structure theory of Lie triple systems. Trans. Amer. Math. Soc. 72(1952), 217242.Google Scholar
[13] Loos, O., Jordan pairs. Lecture Notes in Mathematics, 460, Springer-Verlag, Berlin-New York, 1975.Google Scholar
[14] Meyberg, K., Lectures on algebras and triple systems. Notes on a course of lectures given during the academic year 1971–1972, The University of Virginia, Charlottesville, Va., 1972.Google Scholar
[15] Smirnov, O. N., Simple associative algebras with finite Z-grading. J. Algebra 196(1997), no. 1, 171184. doi:10.1006/jabr.1997.7087Google Scholar
[16] Zel’manov, E. I., Absolute zero-divisors in Jordan pairs and Lie algebras. (Russian) Mat. Sb. (N.S.) 112(154)(1980), no. 4(8), 611629.Google Scholar
[17] Zel’manov, E. I., Lie algebras with algebraic associated representation. Mat. Sb. (N.S.) 121(163)(1983), no. 4, 545561.Google Scholar