Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:08:35.851Z Has data issue: false hasContentIssue false

The Multidirectional Mean Value Theorem in Banach Spaces

Published online by Cambridge University Press:  20 November 2018

M. L. Radulescu
Affiliation:
Centre de recherches mathématiques Université de Montréal C.P. 6128, Succ. Centre-ville Montréal, Québec H3C 3J7
F. H. Clarke
Affiliation:
Centre de recherches mathématiques Université de Montréal C.P. 6128, Succ. Centre-ville Montréal, Québec H3C 3J7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently, F. H. Clarke and Y. Ledyaev established a multidirectional mean value theorem applicable to lower semi-continuous functions on Hilbert spaces, a result which turns out to be useful in many applications. We develop a variant of the result applicable to locally Lipschitz functions on certain Banach spaces, namely those that admit a C1-Lipschitz continuous bump function.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

1. Borwein, J. M. and Preiss, D., A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer.Math. Soc. 303 (1987), 517527.Google Scholar
2. Borwein, J. M. and Strojwas, H. M., Proximal analysis and boundaries of closed sets in Banach space, I, Theory, Canad. J. Math. 38 (1986), 431452.Google Scholar
3. Borwein, J. M. and Strojwas, H. M., Proximal analysis and boundaries of closed sets in Banach space, II, Applications, Canad. J. Math. 39 (1987), 428472.Google Scholar
4. Clarke, F. H., Optimization and nonsmooth analysis, Classics Appl.Math. 5, SIAMPublications, Philadelphia, 1990, originally published by Wiley Interscience, New York, 1983.Google Scholar
5. Clarke, F. H., Methods of dynamic and nonsmooth optimization, CBMS-NSF Regional Conf. Ser.Appl. Math. 57, SIAM Publications, Philadelphia, 1989.Google Scholar
6. Clarke, F. H. and Ledyaev, Yu. S., Mean value inequalities in Hilbert space, Trans. Amer. Math. Soc. 344 (1994), 307324.Google Scholar
7. Clarke, F. H., Mean value inequalities, Proc. Amer.Math. Soc. 122 (1994), 10751083.Google Scholar
8. Clarke, F. H., Ledyaev, Yu S., Stern, R. J., and Wolenski, P. R., Subdifferential and nonlinear analysis, monograph, in preparation.Google Scholar
9. Clarke, F. H., Stern, R. J. and Wolenski, P. R., Subgradient criteria for monotonicity, the Lipschitz condition and convexity, Canad. J. Math. 45 (1993), 11671183.Google Scholar
10. Deville, R., Godefroy, G. and Zizler, V., A smooth variational principle with applications to Hamilton- Jacobi equations, Infinite Dimensions, J. Funct. Anal. 111 (1993), 197212.Google Scholar
11. Deville, R., Godefroy, G. and Zizler, V., Smoothness and renormings in Banach spaces, Pitman Monographs, Surveys Pure Appl. Math. 64, Longman, 1993.Google Scholar
12. Deville, R. and El Haddad, E. M., The subdifferential of the sum of two functions in Banach spaces, I. First order case, to appear.Google Scholar
13. Diestel, J., Geometry of Banach spaces-selected topics, Lecture Notes in Math. 485, Springer, 1975.Google Scholar
14. Ioffe, A. D., Proximal analysis and approximate subdifferentials, J. London Math. Soc. (2) 41 (1990), 175192.Google Scholar
15. Lewis, A. S., D. Ralph, A nonlinear duality result equivalent to the Clarke-Ledyaevmean value inequality, Nonlinear Anal., to appear.Google Scholar
16. Loewen, P. D., Optimal control via nonsmooth analysis, CRM Proceedings and Lecture Notes 2, Amer. Math. Soc., Providence, 1993.Google Scholar
17. Subbotin, A., On a property of a subdifferential, Mat. Sb. 1982(1991) 1315–1330; Russian.Google Scholar
18. Subbotin, A., Generalized solutions of first order PDEs: The dynamical optimization perspective, Birkhaüser, to appear.Google Scholar