Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-12T19:46:07.528Z Has data issue: false hasContentIssue false

Monoidal Categories, 2-Traces, and Cyclic Cohomology

Published online by Cambridge University Press:  07 January 2019

Mohammad Hassanzadeh
Affiliation:
Department of Mathematics and Statistics, University of Windsor, Windsor, ON N9B 3P4 Email: [email protected]@uwindsor.ca
Masoud Khalkhali
Affiliation:
Department of Mathematics, The University of Western Ontario, London N6A 5B7, Ontario N6A 5B7 Email: [email protected]
Ilya Shapiro
Affiliation:
Department of Mathematics and Statistics, University of Windsor, Windsor, ON N9B 3P4 Email: [email protected]@uwindsor.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we show that to a unital associative algebra object (resp. co-unital co-associative co-algebra object) of any abelian monoidal category ($\mathscr{C},\otimes$) endowed with a symmetric 2-trace, i.e., an $F\in \text{Fun}(\mathscr{C},\text{Vec})$ satisfying some natural trace-like conditions, one can attach a cyclic (resp. cocyclic) module, and therefore speak of the (co)cyclic homology of the (co)algebra “with coefficients in $F$”. Furthermore, we observe that if $\mathscr{M}$ is a $\mathscr{C}$-bimodule category and $(F,M)$ is a stable central pair, i.e., $F\in \text{Fun}(\mathscr{M},\text{Vec})$ and $M\in \mathscr{M}$ satisfy certain conditions, then $\mathscr{C}$ acquires a symmetric 2-trace. The dual notions of symmetric 2-contratraces and stable central contrapairs are derived as well. As an application we can recover all Hopf cyclic type (co)homology theories.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

References

Bezrukavnikov, R., Finkelberg, M., and Ostrik, V., On tensor categories attached to cells in affine Weyl groups. III . Israel J. Math. 170(2009), 207234. https://doi.org/10.1007/s11856-009-0026-9.Google Scholar
Bohm, G. and Stefan, D., A categorical approach to cyclic duality . J. Noncommut. Geom. 6(2012), no. 3, 481538. https://doi.org/10.4171/JNCG/98.Google Scholar
Connes, A., Cohomologie cyclique et foncteurs Ext n . C. R. Acad. Sci. Paris Sér. I Math. 296(1983), no. 23, 953958.Google Scholar
Connes, A. and Moscovici, H., Hopf algebras, cyclic cohomology and the transverse index theorem . Commun. Math. Phys. 198(1998), 199246. https://doi.org/10.1007/s002200050477.Google Scholar
Connes, A. and Moscovici, H., Cyclic cohomology and Hopf algebras . Lett. Math. Phys. 48(1999), 97108. https://doi.org/10.1023/A:1007527510226.Google Scholar
Dold, A. and Puppe, D., Duality, trace, and transfer . Proceedings of the Steklov Institute of Mathematics, 154(1984), 85103.Google Scholar
Douglas, C. L., Schommer-Pries, C., and Snyder, N., Dualizable tensor categories. 2018. arxiv:1312.7188.Google Scholar
Etingof, P., Gelaki, S., Nikshych, D., and Ostrik, V., Tensor categories. Mathematical Surveys and Monographs, 205, American Mathematical Society, Providence, RI, 2015. https://doi.org/10.1090/surv/205.Google Scholar
Fuchs, J., Schaumann, G., and Schweigert, C., A trace for bimodule categories . Appl. Categ. Structures 25(2017), no. 2, 227268. https://doi.org/10.1007/s10485-016-9425-3.Google Scholar
Hajac, P. M., Khalkhali, M., Rangipour, B., and Sommerhauser, Y., Hopf-cyclic homology and cohomology with coefficients . C. R. Math. Acad. Sci. Paris 338(2004), no. 9, 667672. https://doi.org/10.1016/j.crma.2003.11.036.Google Scholar
Hajac, P. M., Khalkhali, M., Rangipour, B., and Sommerhauser, Y., Stable anti-Yetter–Drinfeld modules . C. R. Acad. Sci. Paris Ser. I 338(2004), 587590. https://doi.org/10.1016/j.crma.2003.11.037.Google Scholar
Henriques, A., Penneys, D., and Tener, J., Categorified trace for module tensor categories over braided tensor categories . Doc. Math. 21(2016), 10891149.Google Scholar
Joyal, A., Street, R., and Verity, D., Traced monoidal categories . Math. Proc. Cambridge Philos. Soc. 119(1996), 447468. https://doi.org/10.1017/S0305004100074338.Google Scholar
Kaledin, D., Cyclic homology with coefficients . In: Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., 270, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. 2347. https://doi.org/10.1007/978-0-8176-4747-6_2.Google Scholar
Kaledin, D., Trace theories and localization . In: Stacks and categories in geometry, topology, and algebra, Contemp. Math., 643, American Mathematical Society, Providence, RI, 2015, pp. 227262. https://doi.org/10.1090/conm/643/12900.Google Scholar
Kassel, C., Quantum groups. Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-0783-2.Google Scholar
Khalkhali, M. and Pourkia, A., Hopf cyclic cohomology in braided monoidal categories . Homology Homotopy Appl. 12(2010), no. 1, 111155. https://doi.org/10.4310/HHA.2010.v12.n1.a9.Google Scholar
Kobyzev, I. and Shapiro, I., A categorical approach to cyclic cohomology of quasi-Hopf algebras and Hopf algebroids. 2018. arxiv:1803.09194.Google Scholar
Kobyzev, I. and Shapiro, I., Anti-Yetter–Drinfeld modules for quasi-Hopf algebras. arxiv:1804.02031. 2018.Google Scholar
Loday, J. L., Cyclic homology. Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-662-21739-9.Google Scholar
Majid, S., Foundations of quantum group theory. Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511613104.Google Scholar
Majid, S., Quantum double for quasi-Hopf algebras . Lett. Math. Phys. 45(1998), no. 1, 19. https://doi.org/10.1023/A:1007450123281.Google Scholar
Ponto, K., Relative fixed point theory . Algebr. Geom. Topol. 11(2011), 839886. https://doi.org/10.2140/agt.2011.11.839.Google Scholar
Ponto, K. and Shulman, M., Shadows and traces in bicategories . J. Homotopy Relat. Struct. 8(2013), 151200. https://doi.org/10.1007/s40062-012-0017-0.Google Scholar
Schauenburg, P., Hopf modules and Yetter–Drinfel’d modules . J. Algebra 169(1994), 874890. https://doi.org/10.1006/jabr.1994.1314.Google Scholar
Shapiro, I., Some invariance properties of cyclic cohomology with coefficients. 2016. arxiv:1611.01425.Google Scholar
Shapiro, I., On the anti-Yetter–Drinfeld module-contramodule correspondence. 2017. arxiv:1704.06552.Google Scholar
Yetter, D., Quantum groups and representations of monoidal categories . Math. Proc. Cambridge Philos. Soc. 108(1990), no. 2, 261290. https://doi.org/10.1017/S0305004100069139.Google Scholar