Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T01:01:41.710Z Has data issue: false hasContentIssue false

Möbius Randomness Law for Frobenius Traces of Ordinary Curves

Published online by Cambridge University Press:  15 May 2020

Min Sha*
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia e-mail: [email protected]
Igor E. Shparlinski
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia e-mail: [email protected]

Abstract

Recently E. Bombieri and N. M. Katz (2010) demonstrated that several well-known results about the distribution of values of linear recurrence sequences lead to interesting statements for Frobenius traces of algebraic curves. Here we continue this line of study and establish the Möbius randomness law quantitatively for the normalised form of Frobenius traces.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

During the preparation of this paper, the first author was supported by the Australian Research Council Grant DE190100888, and the second author was partially supported by the Australian Research Council Grant DP180100201.

References

Ahmadi, O. and Shparlinski, I. E., On the distribution of the number of points on algebraic curves in extensions of finite fields. Math. Res. Lett. 17(2010), 689699. https://doi.org/10.4310/MRL.2010.v17.n4.a9CrossRefGoogle Scholar
Amoroso, F. and Viada, E., On the zeros of linear recurrence sequences. Acta Arith. 147(2011), 387396. https://doi.org/10.4064/aa147-4-4CrossRefGoogle Scholar
Baker, A. and Wüstholz, G., Logarithmic forms and group varieties. J. Reine Angew. Math. 442(1993), 1962. https://doi.org/10.1515/crll.1993.442.19Google Scholar
Bombieri, E. and Katz, N. M., A note on lower bounds for Frobenius traces. Enseign. Math. 56(2010), 203227. https://doi.org/10.4171/LEM/56-3-1CrossRefGoogle Scholar
Bugeaud, Y., Linear forms in logarithms and applications. IRMA Lectures in Mathematics and Theoretical Physics, 28, European Math. Soc., Zürich, 2018. https://doi.org/10.4171/183Google Scholar
Davenport, H., On some infinite series involving arithmetical functions II. Quart. J. Math. 8(1937), 313320.Google Scholar
Everest, G., van der Poorten, A. J., Shparlinski, I. E., and Ward, T. B., Recurrence sequences. Mathematical Surveys and Mongraphs, 14, Amer. Math. Soc., Providence, RI, 2003. https://doi.org/10.1090/surv/104CrossRefGoogle Scholar
Evertse, J.-H., Schlickewei, H. P., and Schmidt, W. M., Linear equations in variables which lie in a multiplicative group. Ann. of Math. 155(2002), 807836. https://doi.org/10.2307/3062133Google Scholar
Fouvry, É., Kowalski, E., and Michel, P., Algebraic trace functions over the primes. Duke Math. J. 163(2014), 16831736. https://doi.org/10.1215/00127094-2690587CrossRefGoogle Scholar
Gouillon, N., Explicit lower bounds for linear forms in two logarithms. J. Théor. Nombres Bordeaux 18(2006), 125146.CrossRefGoogle Scholar
Howe, E., Principally polarized ordinary abelian varieties over finite fields. Trans. Amer. Math. Soc. 347(1995), 23612401. https://doi.org/10.2307/2154828CrossRefGoogle Scholar
Iwaniec, H. and Kowalski, E., Analytic number theory. American Mathematical Society Colloquium Publications, 53, Amer. Math. Soc., Providence, RI, 2004. https://doi.org/10.1090/coll/053Google Scholar
Katz, N. M., Convolution and equidistribution: Sato–Tate theorems for finite field Mellin transforms. Annals of Math. Studies, 80, Princeton University Press, Princeton, NJ, 2012.Google Scholar
Katz, N. M. and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications, 45, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
Korolev, M. A. and Shparlinski, I. E., Sums of algebraic trace functions twisted by arithmetic functions. Pacific J. Math. 304(2020), 505522. https://doi.org/10.2140/pjm.2020.304.505CrossRefGoogle Scholar
Laurent, M., Mignotte, M., and Nesterenko, Y., Formes linéaires en deux logarithmes et déterminants d’interpolation. J. Number Theory 55(1995), 285321. https://doi.org/10.1006/jnth.1995.1141CrossRefGoogle Scholar
Lorenzini, D., An invitation to arithmetic geometry. Graduate Studies in Mathematics, 9, Amer. Math. Soc., Providence, RI, 1996. https://doi.org/10.1090/gsm/009Google Scholar
Matveev, E. M., An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II. Izv. Math. 64(2000), 12171269. https://doi.org/10.1070/IM2000v064n06ABEH000314CrossRefGoogle Scholar
Perret-Gentil, C., Roots of L-functions of characters over function fields, generic linear independence and biases. Algebr. Number Theory 14(2020), 12911329. https://doi.org/10.2140/ant.2020.14.1291CrossRefGoogle Scholar
van der Poorten, A. J. and Schlickewei, H. P., Zeros of recurrence sequences. Bull. Austral Math. Soc. 44(1991), 215223. https://doi.org/10.1017/S0004972700029646CrossRefGoogle Scholar
van der Poorten, A. J. and Shparlinski, I. E., On the number of zeros of exponential polynomials and related questions. Bull. Austral Math. Soc. 46(1992), 401412. https://doi.org/10.1017/S0004972700012065CrossRefGoogle Scholar
Roth, K.F., Rational approximations to algebraic numbers. Mathematika 2(1955), 120. https://doi.org/10.1112/S002557930000064CrossRefGoogle Scholar
Sarnak, P., Three lectures on the Möbius function, randomness and dynamics. Lecture notes, 2011. https://publications.ias.edu/node/512.Google Scholar
Waldschmidt, M., Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables. Grundlehren der Mathematischen Wissenschaften, 326, Springer-Verlag, Berlin, 2000. https://doi.org/10.1007/978-662-11569-5Google Scholar