Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T21:19:33.271Z Has data issue: false hasContentIssue false

Minimal Non Self Dual Groups

Published online by Cambridge University Press:  20 November 2018

Lili Li
Affiliation:
School of Mathematics and Computation Science, Lingnan Normal University, Zhanjiang, China e-mail: [email protected]
Guiyun Chen
Affiliation:
(Corr. Author) School of Mathematics and Statistics, Southwest University, Chongqing, China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A group $G$ is self dual if every subgroup of $G$ is isomorphic to a quotient of $G$ and every quotient of $G$ is isomorphic to a subgroup of $G$. It is minimal non self dual if every proper subgroup of $G$ is self dual but $G$ is not self dual. In this paper, the structure of minimal non self dual groups is determined.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] An, L. J., Ding, J. R., and Zhang, Q. H., Finite self dual groups. J. Algebra 341(2011), 3544. http://dx.doi.Org/1 0.101 6/j.jalgebra.2O11.06.014 Google Scholar
[2] Holder, O., Die Gruppen der Ordnungen p^.pq2, pqr, p4. Math.Annal. 43(1893), 301412. http://dx.doi.org/10.1007/BF01443651 Google Scholar
[3] Huppert, B., EndlicheGruppen I. Grundlehren Math. Wiss.134, Springer-Verlag, 1967.Google Scholar
[4] Iwasawa, K., Ùberdie endlichenGruppen und die VerbandeihrerUntergruppen. J. Fac. Sci. Imp. Univ. Tokyo Sect. I. 4(1941), 171199.Google Scholar
[5] Rédei, L., Das schiefe Product in der Gruppentheorie. Comment.Math.Helv. 20(1947), 225264. http://dx.doi.org/10.1007/BF02568131 Google Scholar
[6] Spencer, A. E., Self dual finite groups. 1st. Veneto Sci. Lett.ArtiAtti Cl. Sci. Mat.Natur. 130(1971/72), 385391.Google Scholar
[7] Xu, M. Y., An, L. J., and Zhang, Q. H., Finite p-groups all of whose nonabelian proper subgroups are generated by two elements. J. Algebra. 319(2008), 36033620. http://dx.doi.Org/1 0.101 6/j.jalgebra.2008.01.045 Google Scholar
[8] Xu, M. Y., A theorem on metabelian p-groups and some consequences. Chinese Ann. Math. Ser. B 5(1984), 16.Google Scholar
[9] Zhang, Q. H., Sun, X. J., An, L. J., and Xu, M. Y., Finite p-groups all of whose subgroups of index p2 areabelian. Algebra Colloq. 15(2008), 167180. http://dx.doi.org/! 0.1142/S10053867080001 63 Google Scholar