No CrossRef data available.
Article contents
Minimal Non Self Dual Groups
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A group $G$ is self dual if every subgroup of
$G$ is isomorphic to a quotient of
$G$ and every quotient of
$G$ is isomorphic to a subgroup of
$G$. It is minimal non self dual if every proper subgroup of
$G$ is self dual but
$G$ is not self dual. In this paper, the structure of minimal non self dual groups is determined.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2015
References
[1]
An, L. J., Ding, J. R., and Zhang, Q. H., Finite self dual groups.
J. Algebra
341(2011), 35–44. http://dx.doi.Org/1 0.101 6/j.jalgebra.2O11.06.014
Google Scholar
[2]
Holder, O., Die Gruppen der Ordnungen p^.pq2, pqr, p4.
Math.Annal.
43(1893), 301–412. http://dx.doi.org/10.1007/BF01443651
Google Scholar
[3]
Huppert, B., EndlicheGruppen I.
Grundlehren Math. Wiss.134, Springer-Verlag, 1967.Google Scholar
[4]
Iwasawa, K., Ùberdie endlichenGruppen und die VerbandeihrerUntergruppen.
J. Fac. Sci. Imp. Univ. Tokyo Sect. I.
4(1941), 171–199.Google Scholar
[5]
Rédei, L., Das schiefe Product in der Gruppentheorie.
Comment.Math.Helv.
20(1947), 225–264. http://dx.doi.org/10.1007/BF02568131
Google Scholar
[6]
Spencer, A. E., Self dual finite groups. 1st. Veneto Sci. Lett.ArtiAtti Cl. Sci. Mat.Natur. 130(1971/72), 385–391.Google Scholar
[7]
Xu, M. Y., An, L. J., and Zhang, Q. H., Finite p-groups all of whose nonabelian proper subgroups are generated by two elements.
J. Algebra.
319(2008), 3603–3620. http://dx.doi.Org/1 0.101 6/j.jalgebra.2008.01.045
Google Scholar
[8]
Xu, M. Y., A theorem on metabelian p-groups and some consequences.
Chinese Ann. Math. Ser. B
5(1984), 1–6.Google Scholar
[9]
Zhang, Q. H., Sun, X. J., An, L. J., and Xu, M. Y., Finite p-groups all of whose subgroups of index p2 areabelian.
Algebra Colloq.
15(2008), 167–180. http://dx.doi.org/! 0.1142/S10053867080001 63
Google Scholar