No CrossRef data available.
Article contents
Metrization of Ranked Spaces
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
K. Kunugi introduced the notion of ranked space as a generalization of that of metric spaces, (see [6]). In this note we define a metrizability of ranked spaces and study conditions under which a ranked space is metrizable.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1984
References
1.
Aleksandrov, P. and Urysohn, P., Une condition nécessaire et suffisante pour qu'une classe (L) soit une classe (D), Comp. Rendus.
177, 1274-1276 (1923).Google Scholar
2.
Chittenden, E. W., On the equivalence of écart and voisinage, Trans. Amer. Math. Soc.
18, 161-166 (1917).Google Scholar
3.
Frink, A. H., Distance functions and the metrization problem, Bull. Amer. Math. Soc.
43, 133-142 (1937).CrossRefGoogle Scholar
4.
Fréchet, M., Sur quelques points du calcul fonctionel, Rend. Cire. Mat. di Palermo
22, 1-74 (1906).CrossRefGoogle Scholar
6.
Kunugi, K., Sur la méthode des espaces rangés I, Proc. Japan Acad.
42, 318-322 (1966).Google Scholar
You have
Access