Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T12:41:02.450Z Has data issue: false hasContentIssue false

Manifolds Covered by Lines and Extremal Rays

Published online by Cambridge University Press:  20 November 2018

Carla Novelli
Affiliation:
Dipartimento di Matematica “F. Casorati”, Università di Pavia, via Ferrata 1, I-27100 PaviaandDipartimento di Matematica Pura e Applicata, Università di Padova, via Trieste 63, I-35121, Padova, Italye-mail: [email protected]
Gianluca Occhetta
Affiliation:
Dipartimento di Matematica, Università di Trento, via Sommarive 14, I-38123 Povo (TN), Italye-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $X$ be a smooth complex projective variety, and let $H\,\in \,\text{Pic}\left( X \right)$ be an ample line bundle. Assume that $X$ is covered by rational curves with degree one with respect to $H$ and with anticanonical degree greater than or equal to $\left( \dim\,X\,-\,1 \right)/2$. We prove that there is a covering family of such curves whose numerical class spans an extremal ray in the cone of curves $\text{NE}\left( X \right)$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Andreatta, M., Chierici, E., and Occhetta, G., Generalized Mukai conjecture for special Fano varieties. Cent. Eur. J. Math. 2(2004), no. 2, 272293. http://dx.doi.org/10.2478/BF02476544 Google Scholar
[2] Andreatta, M. and Wiśniewski, J. A., A note on nonvanishing and applications. Duke Math. J. 72(1993), no. 3, 739755. http://dx.doi.org/10.1215/S0012-7094-93-07228-6 Google Scholar
[3] Andreatta, M. and Wiśniewski, J. A., On manifolds whose tangent bundle contains an ample subbundle. Invent. Math. 146(2001), no. 1, 209217. http://dx.doi.org/10.1007/PL00005808 Google Scholar
[4] Beltrametti, M. C. and Ionescu, P., On manifolds swept out by high dimensional quadrics. Math. Z. 260(2008), no. 1, 229234. http://dx.doi.org/10.1007/s00209-007-0265-6 Google Scholar
[5] Beltrametti, M. C., Sommese, A. J., and Wiśniewski, J. A., Results on varieties with many lines and their applications to adjunction theory. In: Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, Springer, Berlin, 1992, pp. 1638.Google Scholar
[6] Bonavero, L., Casagrande, C., and Druel, S., On covering and quasi-unsplit families of rational curves. J. Eur. Math. Soc. 9(2007), no. 1, 4557. http://dx.doi.org/10.4171/JEMS/71 Google Scholar
[7] Campana, F., Coréduction algébrique d’un espace analytique faiblement kählérien compact. Invent. Math. 63(1981), no. 2, 187223. http://dx.doi.org/10.1007/BF01393876 Google Scholar
[8] Campana, F., Connexité rationnelle des variétés de Fano. Ann. Sci. école Norm. Sup. (4) 25(1992), no. 5, 539545.Google Scholar
[9] Chierici, E. and Occhetta, G., The cone of curves of Fano varieties of coindex four. Internat. J. Math. 17(2006), no. 10, 11951221. http://dx.doi.org/10.1142/S0129167X06003850 Google Scholar
[10] Debarre, O., Higher-dimensional algebraic geometry. Universitext, Springer-Verlag, New York, 2001.Google Scholar
[11] Fujita, T., On polarized manifolds whose adjoint bundles are not semipositive. In: Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 167178.Google Scholar
[12] Ionescu, P., Generalized adjunction and applications. Math. Proc. Cambridge Philos. Soc. 99(1986), no. 3, 457472. http://dx.doi.org/10.1017/S0305004100064409 Google Scholar
[13] Kobayashi, S. and Ochiai, T., Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13(1973), 3147.Google Scholar
[14] Kollár, J., Rational curves on algebraic varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete, 32, Springer-Verlag, Berlin, 1996.Google Scholar
[15] Novelli, C. and Occhetta, G., Projective manifolds containing a large linear subspace with nef normal bundle. Michigan Math. J. 60(2011), no. 2.Google Scholar
[16] Novelli, C. and Occhetta, G., Rational curves and bounds on the Picard number of Fano manifolds. Geom. Dedicata 147(2010), 207217. http://dx.doi.org/10.1007/s10711-009-9452-4 Google Scholar
[17] Occhetta, G., A characterization of products of projective spaces. Canad. Math. Bull. 49(2006), no. 2, 270280. http://dx.doi.org/10.4153/CMB-2006-028-3 Google Scholar
[18] Wiśniewski, J. A., On a conjecture of Mukai. Manuscripta Math. 68(1990), no. 2, 135141. http://dx.doi.org/10.1007/BF02568756 Google Scholar
[19] Wiśniewski, J. A., On contractions of extremal rays of Fano manifolds. J. Reine Angew. Math. 417(1991), 141157.Google Scholar