Article contents
Lp-Boundedness of a Singular Integral Operator
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $b(t)$ be an
${{L}^{\infty }}$ function on
$\mathbf{R}$,
$\Omega ({y}')$ be an
${{H}^{1}}$ function on the unit sphere satisfying the mean zero property (1) and
${{Q}_{m}}(t)$ be a real polynomial on
$\mathbf{R}$ of degree
$m$ satisfying
${{Q}_{m}}(0)\,=\,0$. We prove that the singular integral operator
$${{T}_{Qm,}}b\left( f \right)\left( x \right)=p.v.\int\limits_{\mathbf{R}}^{n}{b\left( \left| y \right| \right)}\Omega \left( y \right){{\left| y \right|}^{-n}}f\left( x-{{Q}_{m}}\left( \left| y \right| \right){y}' \right)\,\,dy$$
is bounded in ${{L}^{p}}({{\mathbf{R}}^{n}})$ for
$1<p<\infty $, and the bound is independent of the coefficients of
${{Q}_{m}}(t)$.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1998
References
- 3
- Cited by