Published online by Cambridge University Press: 20 November 2018
The main result of this paper is the determination of all nonisomorphic local near-rings <N, +, •> with <N, +> =<C(p) × C(p), +> which are not near-fields. Together with the fundamental paper [6] by Zassenhaus on near-fields and the corollary to Theorem 1 of [2], this 2 paper gives a complete description of all local near-rings of order p2.
We recall that a unitary near-ring N is called local if the subset L of elements in N without left inverses is an (N, N)-subgroup and N ≠ J(N). (J(N) denotes the radical of N given in [1].) In [3] it was proved that N ≠ J(N) whenever L is an ideal of N. (For previous result s concerning local near-rings we refer the reader to [3].)