Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T19:33:01.867Z Has data issue: false hasContentIssue false

The Local Growth of Power Series: A Survey of the Wiman-Valiron Method

Published online by Cambridge University Press:  20 November 2018

W. K. Hayman*
Affiliation:
Imperial College London Sw 7, England
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that

1.1

is a transcendental integral function. In this article we develop the theory initiated by Wiman [22, 23] and deepened by other writers including Valiron [18, 19, 20], Saxer [15], Clunie [4, 5] and Kövari [10, 11], which describes the local behaviour of f(z), near a point where | f(z) | is large, in terms of the power seriesf of f(z).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Barry, P. D., The minimum modulus of small integral and subharmonic functions, Proc. London Math. Soc. (3) 12 (1962), 445-495.Google Scholar
2. Bernstein, S., Sur Vordre de la meilleure approximation des fonctions continues par des polynömes de degré donné, Mém de FAcad. Royale de Belgique (2) 4 (1912), 1-104.Google Scholar
3. Bureau, F., Sur quelques propriétés des fonctions uniformes au voisinage d′un point singulier essentiel isolé, C. R. de l′acad. des sciences (Paris) 192 (1931), 1350-1352.Google Scholar
4. Clunie, J., The determination of an integral function of finite order by its Taylor series, J. London Math. Soc. 28 (1953), 58-66.Google Scholar
5. Clunie, J., On the determination of an integral function from its Taylor series, J. London Math. Soc. 30 (1955), 32-42.Google Scholar
6. Fuchs, W. H. J., Proof of a conjecture of G. Pölya concerning gap series, Illinois J. Math. 7 (1963), 661-667.Google Scholar
7. Hayman, W. K., A generalisation of Stirling′s formula, J. Reine Angew. Math. 196 (1956), 67-95.Google Scholar
8. Hayman, W. K., Meromorphic functions (Oxford, 1964).Google Scholar
9. Hayman, W. K. and Stewart, F. M., Real inequalities with applications to function theory, Proc. Cambridge Philos. Soc. 50 (1954), 250-260.Google Scholar
10. Kövari, T., On theorems of G. Polya and P. Turan, J. Analyse Math. 6 (1958), 323-332.Google Scholar
11. Kövari, T., On the Borel exceptional values oflacunary integral functions, J. Analyse Math. 9 (1961), 71-109.Google Scholar
12. Kövari, T., On the maximum modulus and maximum term of functions analytic in the unit disc, J. London Math. Soc. 41 (1966), 129-137.Google Scholar
13. Littlewood, J. E., Lectures on the theory of functions (Oxford, 1944).Google Scholar
14. Rosenbloom, P. C., Probability and entire functions, Studies in Mathematical Analysis, edited by G. Szegö and others (Stanford University, 1963).Google Scholar
15. Saxer, W., Über die Picardschen Ausnahmewerte sukzessiver Derivierten. Math. Zeit. 17 (1923), 206-227.Google Scholar
16. Sons, L. E., An analogue of a theorem of W. H. J. Fuchs on gap series, Proc. London Math, Soc. (3) 21 (1970), 525-539.Google Scholar
17. Titchmarsh, E. C., The theory of functions, 2nd edition (Oxford, 1939).Google Scholar
18. Valiron, G., Sur les fonctions entières d′ordre fini et d′ordre nul, et en particulier les fonctions á correspondance régulière, Ann. Fac. Sci. Univ. Toulouse (3) 5 (1914), 117-257.Google Scholar
19. Valiron, G., Sur le maximum du module des fonctions entières, C.R. de l′Acad. des sciences (Paris) 166 (1918), 605-608.Google Scholar
20. Valiron, G., Lectures on the general theory of integral functions (reprinted, Chelsea, 1949).Google Scholar
21. Valiron, G., Fonctions entières d′ordre fini et fonctions méromorphes (L′enseignement mathématique, Geneva, 1960).Google Scholar
22. Wiman, A., Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem gross ten Gliede der zugehorigen Taylorschen Reihe, Acta Math. 37 (1914), 305-326.Google Scholar
23. Wiman, A., Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und demgrossten Betrage beigegebenem Argumente der Funktion, Acta Math. 41 (1916), 1-28.Google Scholar