Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T05:19:09.566Z Has data issue: false hasContentIssue false

The Kottman Constant for α-HÖlder Maps

Published online by Cambridge University Press:  20 November 2018

Jesús Suárez de la Fuente*
Affiliation:
Escuela Politécnica, Avenida de la Universidad s/n, 10071 Cáceres, Spain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the role of the Kottman constant of a Banach space $X$ in the extension of $\alpha $-Hölder continuous maps for every $\alpha \in (0,1]$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Benyamini, Y. and J. Lindenstrauss, Geometric nonlinear functional analysis. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000. Google Scholar
[2] Elton, J. and E. Odell, The unit ball of every infinite-dimensional normed linear space contains a (1 + e)-separated sequence. Colloq. Math. 44(1981), 105109. Google Scholar
[3] James, R. C., Uniformly non square Banach spaces. Ann. of Math. 80(1964), 542550. http://dx.doi.org/1 0.2307/1 970663 Google Scholar
[4] Kalton, N. J., Spaces ofLipschitz and Holder functions and their applications. Collect. Math. 55(2004), 171217.Google Scholar
[5] Kalton, N. J., Extending lipschitz maps into C(K)-spaces, Israel J. Math. 162(2007), 275315. http://dx.doi.org/1 0.1007/s11 856-007-0099-2 Google Scholar
[6] Kottman, C. A., Packing and reflexivity in Banach spaces, Tran. Amer. Math. Soc. 150(1970), 565576. http://dx.doi.org/10.1090/S0002-9947-1970-0265918-7 Google Scholar
[7] Lancien, G. and B. Randrianantoanina, On the extension of Holder maps with values in spaces of continuous functions. Israel J. Math. 147(2005), 7592. http://dx.doi.org/10.1007/BF02 785360 Google Scholar
[8] Naor, A., A phase transition phenomenon between the isometric and isomorphic extension problems for Holder functions between Lp spaces. Mathematika 48(2001), 253271. http://dx.doi.org/! 0.1112/SOO2 5579300014480 Google Scholar