Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T08:32:27.364Z Has data issue: false hasContentIssue false

The Irreducibility of Polynomials That Have One Large Coefficient and Take a Prime Value

Published online by Cambridge University Press:  20 November 2018

Anca Iuliana Bonciocat
Affiliation:
Institute of Mathematics, of the Romanian Academy, Bucharest 014700, Romania e-mail: [email protected]@imar.ro
Nicolae Ciprian Bonciocat
Affiliation:
Institute of Mathematics, of the Romanian Academy, Bucharest 014700, Romania e-mail: [email protected]@imar.ro
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use some classical estimates for polynomial roots to provide several irreducibility criteria for polynomials with integer coefficients that have one sufficiently large coefficient and take a prime value.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] Ballieu, R., Sur les limitations des racines d’une équation algébrique. Acad. Roy. Belg. Bull. Cl. Sci. (5) 33(1947), 747750.Google Scholar
[2] Bonciocat, N. C. and Zaharescu, A., Irreducible multivariate polynomials obtained from polynomials in fewer variables. J. Pure Appl. Algebra 212(2008), no. 10, 23382343.Google Scholar
[3] Brillhart, J., Filaseta, M. and Odlyzko, A., On an irreducibility theorem of A. Cohn, Canad. J. Math. 33 (1981) no. 5, 10551059.Google Scholar
[4] Cowling, V. F. and Thron, W. J., Zero-free regions of polynomials. Amer. Math. Monthly 61(1954), 682687.Google Scholar
[5] Cowling, V. F. and Thron, W. J., Zero-free regions of polynomials. J. Indian Math. Soc. (N.S.) 20(1956), 307310.Google Scholar
[6] Filaseta, M., A further generalization of an irreducibility theorem of A. Cohn. Canad. J. Math. 34(1982), no. 6, 13901395.Google Scholar
[7] Filaseta, M., Irreducibility criteria for polynomials with non-negative coefficients. Canad. J. Math. 40(1988), no. 2, 339351.Google Scholar
[8] Fujiwara, M., Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. Tôhoku Math. J. 10(1916), 167171.Google Scholar
[9] Kojima, T., On a theorem of Hadamard's and its application. Tôhoku Math. J. 5(1914), 5460.Google Scholar
[10] Kojima, T., The limits of the roots of an algebraic equation. Tôhoku Math. J. 11(1917), 119127.Google Scholar
[11] Marden, M., Geometry of polynomials. Mathematical Surveys and Monographs No. 3, American Mathematical Society, Providence, RI, 1966.Google Scholar
[12] Perron, O., Algebra. II Theorie der algebraischen Gleichungen. Walter de Gruyter & Co., Berlin, 1951.Google Scholar
[13] Pólya, G., Szegö, G., Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, Berlin, 1964.Google Scholar
[14] Murty, M. Ram, Prime numbers and irreducible polynomials. Amer. Math. Monthly 109(2002), no. 5, 452458.Google Scholar