Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T15:32:21.706Z Has data issue: false hasContentIssue false

Interpolation of Morrey Spaces on Metric Measure Spaces

Published online by Cambridge University Press:  20 November 2018

Yufeng Lu
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People-s Republic of China e-mail: [email protected]@bnu.edu.cn
Dachun Yang
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People-s Republic of China e-mail: [email protected]@bnu.edu.cn
Wen Yuan
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People's Republic of China and Mathematisches Institut, Friedrich-Schiller-Universität Jena, Jena 07743, Germany e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article, via the classical complex interpolation method and some interpolation methods traced to Gagliardo, the authors obtain an interpolation theorem for Morrey spaces on quasimetric measure spaces, which generalizes some known results on ${{\mathbb{R}}^{n}}$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Adams, D. R. and Xiao, J., Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53 (2004), 16291663.Google Scholar
[2] Adams, D. R. and Xiao, J., Morrey potentials and harmonic maps. Comm. Math. Phys. 308 (2011), 439456. http://dx.doi.org/10.1007/s00220-011-1319-5 Google Scholar
[3] Adams, D. R. and Xiao, J., Regularity of Morrey commutators. Trans. Amer. Math. Soc. 364 (2012), 48014818. http://dx.doi.org/10.1090/S0002-9947-2012-05595-4 Google Scholar
[4] Adams, D. R. and Xiao, J., Morrey spaces in harmonic analysis. Ark. Mat. 50 (2012), 201230. http://dx.doi.org/10.1007/s11512-010-0134-0 Google Scholar
[5] Blasco, O., Ruiz, A., and Vega, L., Non-interpolation in Morrey–Campanato and block spaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 3140.Google Scholar
[6] Brudnyĭ, Yu. A. and Krugljak, N. Ya., Interpolation Functors and Interpolation Spaces. Vol. I, North-Holland Publishing Co., Amsterdam, 1991.Google Scholar
[7] Calderón, A.-P., Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964), 113190.Google Scholar
[8] Campanato, S. and Murthy, M. K. V., Una generalizzazione del teorema di Riesz–Thorin. Ann. Scuola Norm. Sup. Pisa (3) 19 (1965), 87100.Google Scholar
[9] Coifman, R. R. and Weiss, G., Analyse Harmonique Non-Commutative sur Certains Espaces Homogçnes. Lecture Notes in Math. 242, Springer-Verlag, Berlin–New York, 1971.Google Scholar
[10] Coifman, R. R. and Weiss, G., Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), 569645. http://dx.doi.org/10.1090/S0002-9904-1977-14325-5 Google Scholar
[11] Frazier, M. and Jawerth, B., A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34170. http://dx.doi.org/10.1016/0022-1236(90)90137-A Google Scholar
[12] Gagliardo, E., Caratterizzazione costruttiva di tutti gli spazi di interpolazione tra spazi di Banach. Symposia Mathematica, Vol. II (INDAM, Rome, 1968), Academic Press, London, 1969, 95106.Google Scholar
[13] Gustavsson, J., On interpolation of weighted Lp-spaces and Ovchinnikov's theorem. Studia Math. 72 (1982), 237251.Google Scholar
[14] Gustavsson, J. and Peetre, J., Interpolation of Orlicz spaces. Studia Math. 60 (1977), 3359.Google Scholar
[15] Hytönen, T., A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54 (2010), 485504.Google Scholar
[16] Kalton, N., Mayboroda, S., and Mitrea, M., Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations. In: Interpolation theory and applications, Contemp. Math. 445 (2007), 121177.Google Scholar
[17] Kreĭn, S. G., Yu. I. Petunın, and Semänov, E. M., Interpolation of Linear Operators. American Mathematical Society, Providence, RI, 1982.Google Scholar
[18] Lemariç–Rieusset, P. G., Multipliers and Morrey spaces. Potential Anal. 38 (2013), no. 3, 741752. http://dx.doi.org/10.1007/s11118-012-9295-8 Google Scholar
[19] Maligranda, L., Orlicz Spaces and Interpolation. In: Seminários de Matemática 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989.Google Scholar
[20] Mizuta, Y., Nakai, E., Ohno, T., and Shimomura, T., Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707744. http://dx.doi.org/10.2969/jmsj/06230707 Google Scholar
[21] Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), 126166. http://dx.doi.org/10.1090/S0002-9947-1938-1501936-8 Google Scholar
[22] Nakai, E., A characterization of pointwise multipliers on the Morrey spaces. Sci. Math. 3 (2000), 445454.Google Scholar
[23] Nakai, E., The Campanato, Morrey and H¨older spaces on spaces of homogeneous type. Studia Math. 176 (2006), 119. http://dx.doi.org/10.4064/sm176-1-1 Google Scholar
[24] Nilsson, P., Interpolation of Banach lattices. Studia Math. 82 (1985), 133154.Google Scholar
[25] Peetre, J., On the theory of Lp spaces. J. Funct. Anal. 4 (1969), 7187.Google Scholar
[26] Peetre, J., Sur l’utilisation des suites inconditionellement sommables dans la th´eorie des espaces d’interpolation. Rend. Sem. Mat. Univ. Padova 46 (1971), 173190.Google Scholar
[27] Ruiz, A. and Vega, L., Corrigenda to “Unique continuation for Schr¨odinger operators with potential in Morrey spaces” and a remark on interpolation of Morrey spaces. Publ. Mat. 3 (1995), 405411.Google Scholar
[28] Shestakov, V. A., Interpolation of linear operators in spaces of measurable functions. (Russian) Funktsional. Anal. i Prilozhen. 8 (1974), 9192. http://dx.doi.org/10.1007/BF01078592 Google Scholar
[29] Shestakov, V. A., On complex interpolation of Banach spaces of measurable functions. (Russian) Vestnik Leningrad. Univ. 19 (1974), 6468.Google Scholar
[30] Sickel, W., Skrzypczak, L. and Vybĭral, J., Complex interpolation of weighted Besov- and Lizorkin–Triebel spaces. Acta Math. Sin. (Engl. Ser.), to appear.Google Scholar
[31] Stampacchia, G., L(p)-spaces and interpolation. Comm. Pure Appl. Math. 17 (1964), 293306. http://dx.doi.org/10.1002/cpa.3160170303 Google Scholar
[32] Yang, D., Yuan, W., and Zhuo, C., Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (Singapore), to appear.Google Scholar
[33] Yuan, W.,Sickel, W., and Yang, D., Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2005, Springer-Verlag, Berlin, 2010.Google Scholar
[34] Yuan, W.,Sickel, W., and Yang, D., Interpolations of Morrey-type spaces. Preprint.Google Scholar