Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T19:18:26.046Z Has data issue: false hasContentIssue false

The Influence on a Finite Group of its Permutable Subgroups

Published online by Cambridge University Press:  20 November 2018

Ram K. Agrawal*
Affiliation:
Ferris State College, Big Rapids, Michigan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Huppert, Janko and Mann have proved the following theorems for a finite group G.

(Huppert [4]). If each second maximal subgroup of G is normal in G, then G is supersolvable. If the order of G is divisible by at least three different primes, then G is nilpotent.

(Huppert [4]). Let each third maximal subgroup of G be normal in G. Then: (i) G′ is nilpotent; (ii) the rank of G=r(G)≤2; (iii) if |G| is divisible by at least three different primes, then G is supersolvable.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Berkovich, Ya. G. and Pal’chik, É. M., On the commutability of subgroups of a finite group, (English translation), Siberian Math. J. 8 (1967), 560-568.Google Scholar
2. Doerk, K., Minimal nicht üiberauflösbare, endliche Gruppen, Math. Z. 91 (1966), 198-205.Google Scholar
3. Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg - New York, 1967.Google Scholar
4. Huppert, B., Normalteiler und maximale untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409-434.Google Scholar
5. Janko, A., Finite groups with invariant fourth maximal subgroups, Math. Z. 82 (1963), 82-89.Google Scholar
6. Kegel, O. H., Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205-221.Google Scholar
7. Mann, A., Finite groups whose n-maximal subgroups are subnormal, Trans. Amer. Math. Soa 132 (1968), 395-409.Google Scholar
8. Ore, O., Contributions to the theory of groups of finite order, Duke Math. J. 5 (1939), 431-460.Google Scholar
9. Pal’chik, É. M., Finite groups with permutable subgroups, (Russian), Dokl. Akad. Nauk BSSR 11 (1967), 391-392.Google Scholar