Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T19:51:14.971Z Has data issue: false hasContentIssue false

Independent Sets of Axioms In Lκα

Published online by Cambridge University Press:  20 November 2018

Xavier Caicedo*
Affiliation:
Departamento de Mateméticas, Universidad de Los Andes Apartado Aéreo4976 Bogota D. E., Colombia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A set of sentences T is called independent if for every . It is countably independent if every countable subset is independent. In flnitary first order logic, Lωω, the two notions coincide because of compactness. This is not the case for infinitary logic.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1981

References

1. Barwise, K. J., Axioms for abstract Model Theory, Annals of Math. Logic, 7, 221. 265 (1974).Google Scholar
2. López-Escobar, E. G. K., An interpolation theorem for denumerably long formulas, Fundamenta Mathematicae, LVII, 253. 272 (1965).Google Scholar
3. Reznikoff, M. I., Tout ensemble de formules de la logique classique est equivalent á un ensemble independant, C.R. Acad. Se. Paris, 260, 2385. 2388 (1965).Google Scholar
4. Rubin, J. E., Set theory for the Mathematician, (1967).Google Scholar
(5) Tarski, A., Note in C. R. Soc. Se. Letters Varsovie III, 23 (1923).Google Scholar