Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T19:20:57.985Z Has data issue: false hasContentIssue false

Incompressibility of Products of Pseudo-homogeneous Varieties

Published online by Cambridge University Press:  20 November 2018

Nikita A. Karpenko*
Affiliation:
Mathematical & Statistical Sciences, University of Alberta, Edmonton, AB e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the conjectural criterion of $p$-incompressibility for products of projective homogeneous varieties in terms of the factors, previously known in a few special cases only, holds in general. Actually, the proof goes through for a wider class of varieties, including the norm varieties associated with symbols in Galois cohomology of arbitrary degree.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Berhuy, G. and Reichstein, Z., On the notion of canonical dimension for algebraic groups. Adv. Math. 198(2005), no. 1, 128171. http://dx.doi.Org/10.1016/j.aim.2004.12.004 Google Scholar
[2] Biswas, I., Dhillon, A., and Hoffmann, N., On the essential dimension of coherent sheaves. arxiv:1306.6432Google Scholar
[3] Elman, R., Karpenko, N., and Merkurjev, A., The algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications 56, American Mathematical Society, Providence, RI, 2008.Google Scholar
[4] Fulton, W., Intersection theory. Second ed. Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer-Verlag, Berlin, 1998.Google Scholar
[5] Karpenko, N. A., Incompressibility of products by Grassmannians ofisotropic subspaces. http://www.ualberta.ca/∼karpenko/publ/pbg-r.pdf Google Scholar
[6] Karpenko, N. A., Canonical dimension. In: Proceedings of the International Congress of Mathematicians. II, New Delhi, Hindustan Book Agency, 2010. pp. 146161.Google Scholar
[7] Karpenko, N. A., Sufficiently generic orthogonal Grassmannians. J. Algebra 372(2012), 365375. http://dx.doi.Org/10.1016/j.jalgebra.2012.09.021 Google Scholar
[8] Karpenko, N. A., Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties. J. Reine Angew. Math. 677(2013), 179198.Google Scholar
[9] Karpenko, N. A., Incompressibility of products of Weil transfers of generalized Severi-Brauer varieties. Math. Z. (2014), 111. http://dx.doi.Org/10.1017/S1474748011000090 Google Scholar
[10] Karpenko, N. A. and Merkurjev, A. S., Canonical p-dimension of algebraic groups. Adv. Math. 205(2006), no. 2, 410433. http://dx.doi.Org/10.1016/j.aim.2005.07.013 Google Scholar
[11] Karpenko, N. A. and Merkurjev, A. S., Essential dimension of finite p-groups. Invent. Math. 172(2008), no. 3, 491508. http://dx.doi.Org/10.1007/s00222-007-0106-6 Google Scholar
[12] Karpenko, N. A. and Merkurjev, A. S., On standard norm varieties. Ann. Sci. Ec. Norm. Super. (4) 46(2013), no. 1,175-214.Google Scholar
[13] Karpenko, N. A. and Merkurjev, A. S., Motivic decomposition of compactifications of certain group varieties. J. Reine Angew. Math., to appear. http://dx.doi.Org/10.1515/crelle-2O16-0015 Google Scholar
[14] Karpenko, N. A. and Reichstein, Z., A numerical invariant for linear representations of finite groups. Comment. Math. Helv. 90(2015), no. 3, 667701. With an appendix by Julia Pevtsova and Z. Reichstein. http://dx.doi.Org/10.41 71/CMH/367 Google Scholar
[15] Lotscher, R., MacDonald, M., Meyer, A., and Reichstein, Z., Essential dimension of algebraic tori. J. Reine Angew. Math. 677(2013), 113. http://dx.doi.Org/10.1515/crelle.2O12.010 Google Scholar
[16] Lotscher, R., MacDonald, M., Meyer, A., and Reichstein, Z., Essential p-dimension of algebraic groups whose connected component is a torus. Algebra Number Theory 7(2013), no. 8, 18171840. http://dx.doi.Org/10.2140/ant.2013.7.1817 Google Scholar
[17] Merkurjev, A. S., Essential dimension. In: Quadratic Forms: Algebra, Arithmetic, and Geometry. Contemp. Math. 493, American Mathematical Society, Providence, RI, 2009, pp. 299326.Google Scholar
[18] Merkurjev, A. S., Essential dimension: a survey. Transform. Groups 18(2013), no. 2, 415481. http://dx.doi.Org/10.1007/s00031-013-92 6-y Google Scholar
[19] Vishik, A. and Zainoulline, K., Motivic splitting lemma. Doc. Math. 13(2008), 8196.Google Scholar