Published online by Cambridge University Press: 20 November 2018
We characterize two important notions of amenability and compactness of a locally compact quantum group $\mathbb{G}$ in terms of certain homological properties. For this, we show that $\mathbb{G}$ is character amenable if and only if it is both amenable and co-amenable. We finally apply our results to Arens regularity problems of the quantum group algebra ${{L}^{1}}\left( \mathbb{G} \right)$. In particular, we improve an interesting result by Hu, Neufang, and Ruan.