Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T06:30:45.605Z Has data issue: false hasContentIssue false

The Haar System in the Preduals of Hyperfinite Factors

Published online by Cambridge University Press:  20 November 2018

D. Potapov
Affiliation:
School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park SA 5042, Australiae-mail: [email protected]
F. Sukochev
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Kensington NSW 2052, Australiae-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We shall present examples of Schauder bases in the preduals to the hyperfinite factors of types $\text{I}{{\text{I}}_{1}},\,\text{I}{{\text{I}}_{\infty }},\,\text{II}{{\text{I}}_{\lambda }},\,0\,<\,\lambda \,\le \,1$. In the semifinite (respectively, purely infinite) setting, these systems form Schauder bases in any associated separable symmetric space of measurable operators (respectively, in any non-commutative ${{L}^{p}}$-space).

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Arazy, J., Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces. Integral Equations Operator Theory 1(1978), no. 4, 453495. doi:10.1007/BF01682937Google Scholar
[2] Bergh, J. and Löfström, J., Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York, 1976.Google Scholar
[3] Connes, A., Classification of injective factors. Cases II 1 , II , III λ λ ≠ 1. Ann. of Math. (2) 104(1976), no. 1, 73115. doi:10.2307/1971057Google Scholar
[4] Dodds, P. G., Ferleger, S. V., de Pagter, B., and Sukochev, F. A., Vilenkin systems and generalized triangular truncation operator. Integral Equations Operator Theory 40(2001), no. 4, 403435. doi:10.1007/BF01198137Google Scholar
[5] Goldstein, S., Conditional expectations in Lp-spaces over von Neumann algebras. In: Quantum probability and applications, II (Heidelberg, 1984), Lecture Notes in Math., 1136, Springer, Berlin, 1985, pp. 233239.Google Scholar
[6] Haagerup, U., Connes’ bicentralizer problem and uniqueness of the injective factor of type III1 . Acta Math. 158(1987), no. 1–2, 95148. doi:10.1007/BF02392257Google Scholar
[7] Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras. Vol. II. Advanced theory. Graduate Studies in Mathematics, 16, American Mathematical Society, Providence, RI, 1997.Google Scholar
[8] Kosaki, H., Applications of the complex interpolation method to a von Neumann algebra: noncommutative Lp-spaces. J. Funct. Anal. 56(1984), no. 1, 2978. doi:10.1016/0022-1236(84)90025-9Google Scholar
[9] Kreĭn, S. G., Petunīn, Y.Ī., and Semënov, E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54, American Mathematical Society, Providence, RI, 1982.Google Scholar
[10] Kwapień, S. and Pełczyński, A., The main triangle projection in matrix spaces and its applications. Studia Math. 34(1970), 4368.Google Scholar
[11] Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer-Verlag, Berlin-New York, 1977.Google Scholar
[12] Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces. II. Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Springer-Verlag, Berlin-New York, 1979.Google Scholar
[13] Pisier, G., Factorization of linear operators and geometry of Banach spaces. CBMS Regional Conference Series in Mathematics, 60, American Mathematical Society, Providence, RI, 1986.Google Scholar
[14] Pisier, G. and Xu, Q., Non-commutative martingale inequalities. Comm. Math. Phys. 189(1997), no. 3, 667698. doi:10.1007/s002200050224Google Scholar
[15] Raynaud, Y., Lp-spaces associated with a von Neumann algebra without trace: a gentle introduction via complex interpolation. In: Trends in Banach spaces and operator theory (Memphis, TN, 2001), Contemp. Math., 321, American Mathematical Society, Providence, RI, 2003, pp. 245273.Google Scholar
[16] Strătilă, Ş. and Zsidó, L., Lectures on von Neumann algebras. Editura Academiei, Bucharest, 1979.Google Scholar
[17] Sukochev, F. A. and Ferleger, S. V., Harmonic analysis in symmetric spaces of measurable operators. (Russian. Dokl. Akad. Nauk 339(1994), no. 3, 307310.Google Scholar
[18] Sukochev, F. A. and Ferleger, S. V., Harmonic analysis in UMD-spaces: applications to basis theory. (Russian) Mat. Zametki 58(1995), no. 6, 890905, 960.Google Scholar
[19] Takesaki, M., Conditional expectations in von Neumann algebras. J. Funct. Anal. 9(1972), 306321. doi:10.1016/0022-1236(72)90004-3Google Scholar
[20] Terp, M., Lp-spaces associated with von Neumann algebras. Copenhagen University, 1981.Google Scholar