Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T12:54:59.974Z Has data issue: false hasContentIssue false

Generalized Torsion Elements and Bi-orderability of 3-manifold Groups

Published online by Cambridge University Press:  20 November 2018

Kimihiko Motegi
Affiliation:
Department of Mathematics, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan e-mail: [email protected]
Masakazu Teragaito
Affiliation:
Department of Mathematics and Mathematics Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-hiroshima 739-8524, Japan. e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is known that a bi-orderable group has no generalized torsion element, but the converse does not hold in general. We conjecture that the converse holds for the fundamental groups of 3-manifolds and verify the conjecture for non-hyperbolic, geometric 3-manifolds. We also confirm the conjecture for some infinite families of closed hyperbolic 3-manifolds. In the course of the proof, we prove that each standard generator of the Fibonacci group $F(2,m)\,(m>2)$ is a generalized torsion element.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Aschenbrenner, M., S. Friedl, and H. Wilton, 3-manifold groups. EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zurich, 2015. http://dx.doi.org/10.4171/154 Google Scholar
[2] Bardakov, V. G. and Vesnin, A. Y., On a generalization of Fibonacci groups. (Russian) Algebra Logika 42(2003 ), no. 2,131-160, 255; translation in Algebra Logic 42(2003), no. 2, 7391. http://dx.doi.org/10.1023/A:1023346206070 Google Scholar
[3] Bludov, V. V. and Lapshina, E. S., On ordering groups with a nilpotent commutant. (Russian), Sibirsk. Mat. Zh. 44( 2003 ), no. 3, 513– 520 ; translation in Siberian Math. J. 44(2003), no. 3, 405-410. http://dx.doi.org/10.1023/A:102385242 8807 Google Scholar
[4] Bonahon, F., Geometric structures on 3-manifolds. In: Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 93164. Google Scholar
[5] Boyer, S., D. Rolfsen, and B. Wiest, Orderable 3-manifold groups. Ann. Inst. Fourier (Grenoble) 55(2005), no. 1, 243288. http://dx.doi.org/10.58O2/aif.2O98 Google Scholar
[6] Chiswell, I., A. Glass, and J. Wilson, Residual nilpotence and ordering in one-relator groups and knot groups. Math. Proc. Cambridge Philos. Soc. 158(2015), no. 2, 275288. http://dx.doi.org/10.101 7/S0305004114000644 Google Scholar
[7] Clay, A., C. Desmarais, and P. Naylor, Testing bi-orderability of knot groups. Canad. Math. Bull. 59(2016), no. 3, 472482. http://dx.doi.org/10.41 53/CMB-2O1 6-023-6 Google Scholar
[8] Conway, J. H., Advanced problem 5327. Amer. Math. Monthly 72(1965), 915. Google Scholar
[9] Dabkowski, M., J. Przytycki, and A. Togha, Non-left-orderable 3-manifold groups. Canad. Math. Bull. 48(2005), no. 1, 3240. http://dx.doi.org/10.4153/CMB-2005-003-6 Google Scholar
[10] Gomez-Larrafiaga, J., W. Heil, and F. Gonzalez-Acufia, 3-manifolds that are covered by two open bundles. Bol. Soc. Mat. Mexicana (3) 10(2004), Special Issue, 171179. Google Scholar
[11] Helling, H., A. Kim, and J. Mennicke, A geometric study of Fibonacci groups. J. Lie Theory 8(1998), no. 1,1-23. Google Scholar
[12] Hempel, J., 3-Manifolds. Ann. of Math. Studies, 86, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1976. Google Scholar
[13] Hilden, H., M. Lozano, and J. Montesinos-Amilibia, The arithmeticity of the figure eight knot orbifolds. In: Topology ‘90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992, pp. 169183. Google Scholar
[14] Howie, J. and G. Williams, Fibonacci type presentations and 3-manifolds. Topology Appl. 215(2017), 2434. http://dx.doi.org/10.1016/j.topol.2016.10.012 Google Scholar
[15] Jaco, W., Lectures on three-manifold topology. CBMS Regional Conference Series in Mathematics, 43, American Mathematical Society, Providence, RI, 1980. Google Scholar
[16] Jaco, W. and P. Shalen, Seifertfibered spaces in 3-manifolds. Mem. Amer. Math. Soc. 21(1979), no. 220. http://dx.doi.org/1 0.1090/memo/0220 Google Scholar
[17] Johnson, D. L., J. W Wamsley, and D. Wright, The Fibonacci groups. Proc. London Math. Soc. (3) 29(1974), 577592. http://dx.doi.org/10.1112/plms/s3-29.4.577 Google Scholar
[18] Kokorin, A. I. and Kopytov, V. M., Linearly ordered groups. (Russian), Monographs in Contemporary Algebra. Izdat. “Nauka”, Moscow, 1972.Google Scholar
[19] Longobardi, P., M. Maj, and A. Rhemtulla, On solvable R*-groups. J. Group Theory 6(2003), no. 4, 499503. http://dx.doi.org/10.1515/jgth.2003.034 Google Scholar
[20] Magnus, W, A. Karrass, and D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations. Second ed., Dover Publications, Inc., Mineola, NY, 2004. Google Scholar
[21] Mura, R. and A. Rhemtulla, Solvable R*-groups. Math. Z. 142(1975), 293298. http://dx.doi.org/10.1007/BF011 83052 Google Scholar
[22] Mura, R., Orderable groups. Lecture Notes in Pure and Applied Mathematics, 27. Marcel Dekker, Inc., New York-Basel, 1977.Google Scholar
[23] Naylor, G. and D. Rolfsen, Generalized torsion in knot groups. Canad. Math. Bull. 59(2016), no. 1, 182189. http://dx.doi.org/10.4153/CMB-2O15-004-4 Google Scholar
[24] Newman, M. F., Proving a group infinite. Arch. Math. 54(1990), 209-211. http://dx.doi.org/10.1007/BF01188513 Google Scholar
[25] Orlik, P., Seifert manifolds. Lecture Notes in Mathematics, 291, Springer-Verlag, Berlin-New York, 1972.Google Scholar
[26] Peters, T., On L-spaces and non left-orderable 3-manifold groups. arxiv:0903.4495Google Scholar
[27] Roberts, R., J. Shareshian, and M. Stein, Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation. J. Amer. Math. Soc. 16(2003), no. 3, 639679. http://dx.doi.org/10.1090/S0894-0347-03-00426-0 Google Scholar
[28] Scott, P., The geometries of 3-manifolds. Bull. London Math. Soc. 15(1983), no. 5, 401487. http://dx.doi.org/10.111 2/blms/1 5.5.401 Google Scholar
[29] Teragaito, M., Fourfold cyclic branched covers of genus one two-bridge knots are L-spaces. Bol. Soc. Mat. Mex. (3) 20(2014), no. 2, 391403. http://dx.doi.org/! 0.1007/s40590-01 4-0026-6 Google Scholar
[30] Teragaito, M., Generalized torsion elements in the knot groups of twist knots. Proc. Amer. Math. Soc. 14(2016), no. 6, 26772682. http://dx.doi.org/10.1090/procyi2864 Google Scholar
[31] Thomas, R. M., The Fibonacci groups revisited. Groups St. Andrews 1989, 2, 445454, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991. http://dx.doi.org/10.1017/CBO9780511661846.017 Google Scholar
[32] Vinogradov, A. A., On the free product of ordered groups. Mat. SbornikN. S. 25(67)(1949), 163168.Google Scholar