Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T17:38:30.892Z Has data issue: false hasContentIssue false

Generalized Second Fundamental form for Lipschitzian Hypersurfaces by Way of Second Epi Derivatives

Published online by Cambridge University Press:  20 November 2018

Dominikus Noll*
Affiliation:
Universität Stuttgart Mathematisches Institut B Pfajfenwaldring 57 7000 Stuttgart 80 Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using second epi derivatives, we introduce a generalized second fundamental form for Lipschitzian hypersurfaces. In the case of a convex hypersurface, our approach leads back to the classical second fundamental form, which is usually obtained from the second fundamental forms of the outer parallel surfaces by means of a limit procedure.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

1. Attouch, H., Familles d'opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura Appl. 120(1979), 35111.Google Scholar
2. Attouch, H. and Wets, R.J.-B., A convergence theory for saddle functions, Trans. Amer. Math. Soc. 280(1983), 141.Google Scholar
3. Ben-Tal, A. and Zowe, J., Directional derivatives in nonsmooth optimization, J. Optimiz. Theory Appl.47(1985), 483490.Google Scholar
4. Borwein, J. M. and Noll, D., Second order differentiability of convex functions in Banach space, Trans. Amer. Math. Soc, to appear.Google Scholar
5. Bouligand, G., Géométrie infinitésimale directe, Paris, 1932.Google Scholar
6. Busemann, H., Convex Surfaces, Interscience Publishers, New York, 1955.Google Scholar
7. Busemann, H. and Feller, W., Kriimmungseigenschaften konvexer Flächen, Acta Math. 66(1936), 147.Google Scholar
8. Clarke, F., Generalized gradients and applications, Trans. Amer. Math. Soc. 205(1975), 247262.Google Scholar
9. DoCarmo, M., Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.Google Scholar
10. Dolecki, S., Salinetti, G. and Wets, R. J.-B., Convergence of functions: equi-semi continuity, Trans. Amer. Math. Soc. 276(1983), 409ff.Google Scholar
11. Hiriart-Urruty, J.-B. and Seeger, A., Calculus rules on a new set-valued second derivative for convex functions, Nonlin. Anal., Theory, Methods, Appl. 13(1989), 721738.Google Scholar
12. Rockafellar, R. T., Convex Analysis, Princeton Univ. Press, NJ, 1970.Google Scholar
13. Rockafellar, R. T., Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré. Anal. Non Lin. 2(1985), 167184.Google Scholar
14. Rockafellar, R. T., Generalized second derivatives of convex functions and saddle functions, Trans. Amer. Math. Soc. 322(1990), 5177.Google Scholar
15. Rockafellar, R. T., Second order optimality conditions in non- linear programming obtained by way ofepi derivatives, Math. Oper. Res. 14(1989), 462484.Google Scholar
16. Salinetti, G. and Wets, R. J.-B., On the relation between two types of convergence for convex functions, J. Math. Anal. Appl. 60(1977), 211226.Google Scholar