Published online by Cambridge University Press: 20 November 2018
Let $x\,=\,\left( {{x}_{1}},\,.\,.\,.\,,\,{{x}_{n}} \right)\,\in \,{{\mathbb{R}}^{n}}$ and ${{\delta }_{\text{ }\!\!\lambda\!\!\text{ }}}x\,=\,\left( {{\text{ }\!\!\lambda\!\!\text{ }}^{{{\alpha }_{1}}}}{{x}_{1}},\,.\,.\,.\,,\,{{\text{ }\!\!\lambda\!\!\text{ }}^{{{\alpha }_{n}}}}{{x}_{n}} \right)$, where $\text{ }\lambda \,>\text{0}$ and $1\,\le \,{{\alpha }_{1}}\,\le \,\cdot \,\cdot \,\cdot \,\le \,{{\alpha }_{n}}$. Denote $\left| \alpha \right|\,=\,{{\alpha }_{1}}+\,\cdot \,\cdot \,\cdot \,+{{\alpha }_{n}}$. We characterize those functions $A\left( x \right)$ for which the parabolic Calderón commutator
1
is bounded on ${{L}^{2}}\left( {{\mathbb{R}}^{n}} \right)$, where $K\left( {{\delta }_{\text{ }\!\!\lambda\!\!\text{ }}}x \right)\,=\,{{\text{ }\!\!\lambda\!\!\text{ }}^{-\,\left| \alpha \right|\,-\,1}}K\left( x \right)$, $K$ is smooth away fromthe origin and satisfies a certain cancellation property.