No CrossRef data available.
Article contents
Generalization of a Result of E. Lucas
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A well-known result of E. Lucas enables one to obtain the residue modulo p of in terms of the base-p digits of M and N. Using a recent result of P. W. Haggard and J. O. Kiltenen, a proof of N. J. Fine has been adapted to yield the corresponding residue modulo pr.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1988
References
1.
Dwork, B., p-adic cycles, Inst. Hautes Études Sci. Publ. Math. No. 37 (1969), pp. 27–115.Google Scholar
2.
Fine, N. J., Binomial coefficients modulo a prime, Amer. Math. Monthly
54 (1947), pp. 589–592.Google Scholar
3.
Haggard, P. W. and Kiltenen, J. O., Binomial expansions modulo prime powers, Internat. J. Math, and Math. Sc.
3 (1980), pp. 397–400.Google Scholar
4.
Lucas, E., Théorie des nombres, Tome 1, Librairie Scientifique et Technique Albert Blanchard, Paris (1961) (Original 1891).Google Scholar
You have
Access