Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T19:16:52.671Z Has data issue: false hasContentIssue false

A General and Sharpened form of Opial's Inequality

Published online by Cambridge University Press:  20 November 2018

D. T. Shum*
Affiliation:
University of Toronto, Toronto, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Z. Opial [11] proved in 1960 the following theorem:

Theorem 1. If u is a continuously differentiable function on [0, b], and if u(0)= u(b)=0 and u(x) > 0 for x ∊ (0, b), then

1

where the constant b/4 is the best possible.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Beckenbach, E. F. and Bellman, R., Inequalities, 2nd revised printing, Springer, Berlin, 1965.Google Scholar
2. Beesack, P. R., On an integral inequality of Z. Opial, Trans. Amer. Math. Soc, 104 (1962), 470-475.Google Scholar
3. Beesack, P. R., Integral inequalities involving a function and its derivative, Amer. Math. Monthly, 78 (1970), 705-741.Google Scholar
4. Benson, D. C., Inequalities involving integrals of functions and their derivatives, J. of Math. Anal. Appl., 17 (1967), 292-308.Google Scholar
5. Boyd, D. W. and Wong, J. S. W., An extension of Opia′s inequality, J. of Math. Anal. Appl., 19 (1967), 100-102.Google Scholar
6. Calvert, J., Some generalizations of Opia′s inequality, Proc. Amer. Math. Soc, 18 (1967), 72-75.Google Scholar
7. Hardy, G. H., Littlewood, J. E. and Pölya, G., Inequalities, 2nd éd., Cambridge, 1952.Google Scholar
8. Hua, L. K., On an inequality of Opial, Scientia Sinica 14 (1965), 789-790.Google Scholar
9. Mitrinovič, D. S. and Vasi, P. M.č, Analytic inequalities, Springer, Berlin, 1970.Google Scholar
10. Olech, C., A simple proof of a certain result of Z. Opial, Ann. Polon. Math., 8 (1960), 61-63.Google Scholar
11. Opial, Z., Sur une inégalité, Ann. Polon. Math., 8 (1960), 29-32.Google Scholar
12. Shum, D. T., On integral inequalities related to Hardy′s, Canad. Math. Bull., 14 (1971), 225-230.Google Scholar
13. Wong, J. S. W., A discrete analogue of Opia′s inequality, Canad. Math. Bull., 10 (1967), 115-118.Google Scholar
14. Yang, G. S., On a certain result of Z. Opial, Proc. Japan Acad., 42 (1966), 78-83.Google Scholar