Published online by Cambridge University Press: 20 November 2018
We study free and injective Lie modules by investigating the relationship between Lie modules and (associative) modules. An important role is played by the universal enveloping ring of a Lie ring [4]. If L is an arbitrary Lie ring and W(L) its universal enveloping ring, we show that the category of Lie L-modules and the category of associative W(L)-module s are isomorphic (section 2). In section 3 we study free Lie modules and show how they may be obtained from free associative modules. A Lie module is free if and only if it is a direct sum of copies of the free Lie module on one generator.
I wish to thank Professor J, Lambek for many helpful suggestions.