Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:53:40.286Z Has data issue: false hasContentIssue false

Fano quiver moduli

Published online by Cambridge University Press:  28 December 2020

Hans Franzen
Affiliation:
Faculty of Mathematics, Ruhr-University Bochum, Universitätsstrasse 150, 44780Bochum, Germanye-mail:[email protected]
Markus Reineke*
Affiliation:
Faculty of Mathematics, Ruhr-University Bochum, Universitätsstrasse 150, 44780Bochum, Germanye-mail:[email protected]
Silvia Sabatini
Affiliation:
Mathematical Institute, University of Cologne, Weyertal 86-90, 50931Cologne, Germanye-mail:[email protected]

Abstract

We exhibit a large class of quiver moduli spaces, which are Fano varieties, by studying line bundles on quiver moduli and their global sections in general, and work out several classes of examples, comprising moduli spaces of point configurations, Kronecker moduli, and toric quiver moduli.

Type
Article
Copyright
© Canadian Mathematical Bulletin 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors are supported by the DFG SFB/Transregio 191 “Symplektische Strukturen in Geometrie, Algebra, und Dynamik.” The second-named author is supported by the DFG GRK 2240 “Algebro-Geometrische Methoden in Algebra, Arithmetik, und Topologie.”

References

Altmann, K. and Hille, L., Strong exceptional sequences provided by quivers. Algebras Represent. Theory 2(1999), 117.CrossRefGoogle Scholar
Belmans, P., Fanography. https://fanography.info Google Scholar
Bonavero, L., Casagrande, C., Debarre, O., and Druel, S., Sur une conjecture de Mukai. Comment. Math. Helv. 78(2003), no. 3, 601626.CrossRefGoogle Scholar
Casagrande, C., The number of vertices of a Fano polytope. Ann. Inst. Fourier (Grenoble) 56(2006), no. 1, 121130.10.5802/aif.2175CrossRefGoogle Scholar
Ciocan-Fontanine, I., Kim, B., and Maulik, D., Stable quasimaps to GIT quotients. J. Geom. Phys. 75(2014), 1747.CrossRefGoogle Scholar
Fei, J., Moduli of representations I. Projections from quivers. Preprint, 2020. arxiv:1011.6106 Google Scholar
Franzen, H., Chow rings of fine quiver moduli are tautologically presented. Math. Z. 279(2015), nos. 3–4, 11971223.CrossRefGoogle Scholar
Franzen, H., Torus-equivariant chow rings of quiver moduli. SIGMA 16(2020), no. 96, 22.Google Scholar
Franzen, H. and Reineke, M., Cohomology rings of moduli of point configurations on the projective line. Proc. Amer. Math. Soc. 146(2018), no. 6, 23272341.CrossRefGoogle Scholar
Gagliardi, G. and Hofscheier, J., The generalized Mukai conjecture for symmetric varieties. Trans. Amer. Math. Soc. 369(2017), 26152649.10.1090/tran/6738CrossRefGoogle Scholar
Halic, M., Cohomological properties of invariant quotients of affine spaces. J. Lond. Math. Soc. 82(2010), no. 2, 376394.CrossRefGoogle Scholar
Halic, M., Strong exceptions sequences of vector bundles on certain Fano varieties. Preprint, 2020. arxiv:0906.3466 Google Scholar
Hille, L., Aktionen algebraischer Gruppen, Geometrische Quotienten und Köcher. Habilitationsschrift, Hamburg, Germany, 2002.Google Scholar
Howard, B., Millson, J., Snowden, A., and Vakil, R., A description of the outer automorphism of S6, and the invariants of six points in projective space. J. Combin. Theory Ser. A 115(2008), no. 7, 12961303.10.1016/j.jcta.2008.01.004CrossRefGoogle Scholar
Hu, Y. and Keel, S., Mori dream spaces and GIT. Michigan Math. J. 48(2000), 331348.CrossRefGoogle Scholar
King, A., Moduli of representations of finite-dimensional algebras. Q. J. Math. Oxford Ser. (2) 45(1994), no. 180, 515530.CrossRefGoogle Scholar
King, A. and Walter, C., On Chow rings of fine moduli spaces of modules. J. Reine Angew. Math. 461(1995), 179187.Google Scholar
Kobayashi, S. and Ochiai, T., Characterization of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ. 13(1973), no. 1, 3147.Google Scholar
Maslovaric, M., Quotients of spectra of almost factorial domains and Mori dream spaces. Preprint, 2020. arxiv:1508.00539 Google Scholar
Mori, S., Projective manifolds with ample tangent bundles. Ann. Math. 110(1979), 593606.10.2307/1971241CrossRefGoogle Scholar
Mukai, S., Problems on characterization of the complex projective space . In: Birational geometry of algebraic varieties, open problems, Proceedings of the 23rd Symposium, Taniguchi Foundation, Katata, Japan, 1988, pp. 5760.Google Scholar
Pasquier, B., The pseudo-index of horospherical Fano varieties. Int. J. Math. 21(2010), no. 9, 11471156.CrossRefGoogle Scholar
Reineke, M., The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152(2003), no. 2, 349368.CrossRefGoogle Scholar
Reineke, M. and Schröer, S., Brauer groups for quiver moduli. Algebr. Geom. 4(2017), no. 4, 452471.CrossRefGoogle Scholar
Reineke, M. and Weist, T., Moduli spaces of point configurations and plane curve counts. Int. Math. Res. Notices, to appear.Google Scholar
Schofield, A., General representations of quivers. Proc. Lond. Math. Soc. (3). 65(1992), no. 1, 4664.CrossRefGoogle Scholar
Schofield, A., Birational classification of moduli spaces of representations of quivers. Indag. Math. (NS) 12(2001), no. 3, 407432.CrossRefGoogle Scholar