No CrossRef data available.
Article contents
A Factorization Theorem for Multiplier Algebras of Reproducing Kernel Hilbert Spaces
Published online by Cambridge University Press: 20 November 2018
Abstract.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let $\left( X,\,B,\,\mu \right)$ be a $\sigma $-finite measure space and let $H\,\subset \,{{L}^{2}}\left( X,\,\mu \right)$ be a separable reproducing kernel Hilbert space on $X$. We show that the multiplier algebra of $H$ has property $\left( {{A}_{1}}\left( 1 \right) \right)$.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2013
References
[1]
Agler, J. and McCarthy, J. E., Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics 44. American Mathematical Society, Providence RI, 2002.Google Scholar
[2]
Apostol, C., Bercovici, H., C. Foias, and Pearcy, C., Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I. J. Funct. Anal.
63(1985), no. 3, 369–404.
http://dx.doi.org/10.1016/0022-1236(85)90093-X
Google Scholar
[3]
Aronszajn, N., Theory of reproducing kernels. Trans. Amer. Math. Soc.
68(1950), 337–404.
http://dx.doi.org/10.1090/S0002-9947-1950-0051437-7
Google Scholar
[4]
Beltită, D. and Prunaru, B., Amenability, completely bounded projections, dynamical systems and smooth orbits. Integral Equations Operator Theory
57(2007), no. 1, 1–17.
http://dx.doi.org/10.1007/s00020-006-1446-0
Google Scholar
[5]
Bercovici, H., The algebra of multiplication operators on Bergman spaces. Arch. Math. (Basel),
48(1987), no. 2, 165–174.
Google Scholar
[6]
Bercovici, H., Factorization theorems for integrable functions. In: Analysis at Urbana, Vol. II. London Math. Soc. Lecture Note Ser. 138. Cambridge Univ. Press, Cambridge, 1989, pp. 9–21.
Google Scholar
[7]
Bercovici, H., Foias, C., and Pearcy, C., Dual Algebras with Applications to Invariant Subspaces and Dilation Theory. CBMS Regional Conference Series in Mathematics 56. American Mathematical Society, Providence, RI, 1985.Google Scholar
[8]
Bercovici, H. and Li, W. S., A near-factorization theorem for integrable functions. Integral Equations Operator Theory
17(1993), no. 3, 440–442.
http://dx.doi.org/10.1007/BF01200295
Google Scholar
[9]
Berezin, F., Covariant and contravariant symbols of operators. (Russian) Izv. Akad. Nauk SSSR Ser. Mat.
36(1972), 1134–1167.
Google Scholar
[10]
Choi, M. D. and Effros, E. G., The completely positive lifting problem for C-algebras. Ann. of Math.
104(1976), no. 3, 585–609.
http://dx.doi.org/10.2307/1970968
Google Scholar
[11]
Choi, M. D. and Effros, E. G., Injectivity and operator spaces. J. Functional Analysis
24(1977), no. 2, 156–209.
http://dx.doi.org/10.1016/0022-1236(77)90052-0
Google Scholar
[12]
Davidson, K. R. and Hamilton, R., Nevanlinna-Pick interpolation and factorization of linear functionals. Integral Equations Operator Theory
70(2011), no. 1, 125–149.
http://dx.doi.org/10.1007/s00020-011-1862-7
Google Scholar
[13]
Engliś, M., Functions invariant under the Berezin transform. J. Functional Analysis
121(1994), no. 1, 233–254.
http://dx.doi.org/10.1006/jfan.1994.1048
Google Scholar
[14]
Hadwin, D.W. and Nordgren, E. A., Subalgebras of reflexive algebras. J. Operator Theory
7(1982), no. 1, 3–23.
Google Scholar
[15]
Prunaru, B., Approximate factorization in generalized Hardy spaces. Integral Equations Operator Theory
61(2008), no. 1, 121–145.
http://dx.doi.org/10.1007/s00020-008-1580-y
Google Scholar
[16]
Sakai, S., C*-Algebras amd W*-Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete 60. Springer-Verlag, New York, 1971.Google Scholar
[17]
Stinespring, W. F., Positive functions on C*-algebras. Proc. Amer. Math. Soc.
6(1955), 211–216.
Google Scholar
[18]
Zhu, K., Operator Theory in Function Spaces. Second edition. Mathematical Surveys and Monographs 138. American Mathematical Society, Providence, RI, 2007
Google Scholar
You have
Access