Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T18:09:39.197Z Has data issue: false hasContentIssue false

Extension Function and Subcategories of Haus

Published online by Cambridge University Press:  20 November 2018

Jack R. Porter*
Affiliation:
University of Kansas Lawrence, Kansas 66045
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For each Hausdorff space X, let FX be an Hausdorff extension of X. The existence of the largest subcategory of HAUS on which F s a functor and an epi-reflection is investigated.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1975

References

A Alexandroff, P. S., On bicompact extension of topological spaces (Russian), Mat. Sbornik N.S. 5 (1939), 420429.Google Scholar
B Banaschewski, B., Hausdorffsch-minimale Erweiterungen von Raumen, Arch. Math. 12 (1961), 355365.Google Scholar
BPS Berri, M. P., Porter, J. R., and Stephenson, R. M. Jr., A survey of minimal topological spaces, General Topology and its Relation to Modern Analysis and Algebra HI (Proc. Top. Conf. Kanpur, 1968), Academia, Prague, 1971, pp. 93114.Google Scholar
F Flachsmeyer, J., Zur théorie der H-abgeschlossen Erweiterungen, Math. Z. 94 (1966), 349- 381.Google Scholar
Fo Fomin, S., Extension of topological spaces, Ann. of Math. 44 (1943), 471480.Google Scholar
H1 Harris, D., Structures in topology, Mem. Amer. Math. Soc. 115 (1971).Google Scholar
H2 Harris, D., Katětov Extension as a functor, Math. Ann. 193 (1971), 171175.Google Scholar
HS1 Herrlich, H. and Strecker, G., H-closed spaces and reflective subcategories, Math. Ann. 177 (1968), 302308.Google Scholar
HS2 Herrlich, H. and Strecker, G., Category Theory, Allyn and Bacon, Boston, 1973.Google Scholar
Hu Hunsaker, W. N., Problems in categorical topology, Southern Illinois University Categorical Topology Conference, 1973.Google Scholar
HN Hunsaker, W. N. and Naimpally, S. A., Extensions of continuous functions; reflective functors (submitted).Google Scholar
Kl Katětov, M., On H-closed extension of topological space, Časopis Pěst. Mat. Fys. 72 (1947), 1732.Google Scholar
K2 Katětov, M., On the equivalence of certain types of extension of topological spaces, ibid. 72 (1947), 101106.Google Scholar
L Liu, C. T., The α-closure αX of a topological space X, Proc. Amer. Math. Soc. 22 (1969), 620624.Google Scholar
LS Liu, C. T. and Strecker, G. H., Concerning almost real compactifications, Czech. Math. J. 22(1972), 181190.Google Scholar
PT Porter, J. R. and Thomas, J. D., On H-closed and minimal Hausdorff space, Trans. Amer. Math. Soc. 138 (1969), 159170.Google Scholar
PV1 Porter, J. R., Thomas, J. D. and Votaw, C., S(α) spaces and regular Hausdorff extensions, Pac. J. Math. 45 (1973), 327345.Google Scholar
PV2 Porter, J. R., Thomas, J. D. and Votaw, C., H-closed extensions I, Gen. Top. and its Appl. 3 (1973), 211224.Google Scholar
PV3 Porter, J. R., Thomas, J. D. and Votaw, C., H-closed extensions II, Trans. Amer. Math. Soc, to appear.Google Scholar
T Tong, H., Solutions of problems of P. S. Alexandroff on extensions of topological spaces, Ann. Mat. Pura Appl. (4) 86 (1970), 4752.Google Scholar
W Wenjen, C., On H-closedness and the Wallman H-closed extension I, II Proc. Japan Acad. 46 (1970), 11021106 and 47 (1971), 383–393.Google Scholar