Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T05:20:49.426Z Has data issue: false hasContentIssue false

Extending the Archimedean Positivstellensatz to the Non-Compact Case

Published online by Cambridge University Press:  20 November 2018

M. Marshall*
Affiliation:
Department of Mathematics and Statistics University of Saskatchewan Saskatoon, Saskatchewan S7N 0W0, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A generalization of Schmüdgen’s Positivstellensatz is given which holds for any basic closed semialgebraic set in ${{\mathbb{R}}^{n}}$ (compact or not). The proof is an extension of Wörmann’s proof.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2001

References

[1] Acquistapace, F., Andradas, C. and Broglia, F., The strict Positivstellensatz for global analytic functions and the moment problem for semianalytic sets. preprint.Google Scholar
[2] Andradas, C., Bröcker, L. and Ruiz, J. M., Constructible sets in real geometry. Ergeb Math., Springer, Berlin, Heidelberg, New York, 1996.Google Scholar
[3] Becker, E. and Schwartz, N., Zum Darstellungssatz von Kadison-Dubois. Arch. Math. 39 (1983), 421428.Google Scholar
[4] Berr, R. and Wörman, T., Positive polynomials and tame preorderings. Math. Z., (to appear).Google Scholar
[5] Bochnak, J., Coste, M. and Roy, M. F., Géométrie Algébrique Réelle. Ergeb Math., Springer, Berlin, Heidelberg, New York, 1987.Google Scholar
[6] Jacobi, T., A representation theorem for certain partially ordered commutative rings. Math. Z., (to appear).Google Scholar
[7] Lam, T. Y., An introduction to real algebra. Rocky Mountain J. Math. 14 (1984), 767814.Google Scholar
[8] Marshall, M., A real holomorphy ring without the Schmüdgen property. Canad. Math. Bull. 42 (1999), 354358.Google Scholar
[9] Monnier, J. P., Anneaux d’holomorphie et Positivstellensatz archimédien. Manuscripta Math. 97 (1998), 269302.Google Scholar
[10] Putinar, M., Positive polynomials on compact semi-algebraic sets. Indiana Univ.Math. J. 42 (1993), 969984.Google Scholar
[11] Schmüdgen, K., The K-moment problem for compact semialgebraic sets. Math. Ann. 289 (1991), 203206.Google Scholar
[12] Stengle, G., A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207 (1974), 6797.Google Scholar
[13] Wörmann, T., Short algebraic proofs of theorems of Schmüdgen and Pólya. preprint.Google Scholar
[14] Wörmann, T., Strikt positive Polynome in der semialgebraischen Geometrie. PhD Thesis, Dortmund, 1998.Google Scholar