Published online by Cambridge University Press: 20 November 2018
A general embedding technique for graph designs and block designs is developed, which transforms the embedding problem for partial designs with ƛ > 1 into the embedding problem for partial designs with ƛ = 1. Given an embedding technique for n-element partial block designs with ƛ = 1 into block designs with f(n) elements, the transformation produces a technique which embeds an «-element partial design with ƛ > 1 and block size k into a design with at most /(3k-1ƛn2) elements. For graph designs and block designs with k > 3, a finite embedding method results. For triple systems, a quadratic embedding technique is obtained immediately; the best previous result here was exponential. Finally, for partial triple systems, Mendelsohn triple systems, and directed triple systems, these quadratic embeddings are improved to linear using a colouring technique.