Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T07:31:11.832Z Has data issue: false hasContentIssue false

Divisor Sums of Generalised Exponential Polynomials

Published online by Cambridge University Press:  20 November 2018

G. R. Everest
Affiliation:
School of Mathematics, University of East Anglia, Norwich, Norfolk NR4 7TJ, U K., e-mail:[email protected]
I. E. Shparlinski
Affiliation:
School of MPCE, Macquarie University, NSW 2109, Australia., e-mail:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A study is made of sums of reciprocal norms of integral and prime ideal divisors of algebraic integer values of a generalised exponential polynomial. This includes the important special cases of linear recurrence sequences and general sums of S-units. In the case of an integral binary recurrence sequence, similar (but stronger) results were obtained by P. Erdős, P. Kiss and C. Pomerance.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

1. Erdös, P., Kiss, P. and Pomerance, C., On prime divisors of Mersenne numbers, Acta Arith. 57(1991), 267— 281.Google Scholar
2. Everest, G. R., On the p-adic integral of an exponential polynomial, Bull. London Math. Soc. 27(1995), 334340.Google Scholar
3. Evertse, J.-H., On sums of S-units and linear recurrences, Compositio Math. 53(1984), 225244.Google Scholar
4. Evertse, J.-H., Györy, K., Stewart, C. L. and R. Tijdeman, S-unit equations and their applications, New Advances in Transcendence Theory, A. Baker, éd., C.U.P. (1988), 110-174.Google Scholar
5. Laurent, M., Equations exponentielles-polynômes et suites récurrentes linéaires II, J. Number Theory 31 (1989), 2453.Google Scholar
6. Pomerance, C., On primitive divisors of Mersenne numbers, Acta Arith. 46(1986), 355—367.Google Scholar
7. van der Poorten, A. J., Some facts that should be better known, especially about rational functions, Number Theory and Applications, R. A. Mollin, éd., Kluwer, The Netherlands (1989), 497528.Google Scholar
8. van der Poorten, A. J. and Schlickewei, H.-P., Zeros of recurring sequences, Bull. Austral. Math. Soc. 44(1991), 215223.Google Scholar
9. van der Poorten, A. J. and Shparlinski, I. E., On the number of zeros of exponential polynomials and related questions, Bull. Austral. Math. Soc. 46(1992), 401412.Google Scholar
10. Shorey, T. N. and Tijdeman, R. J., Exponential Diophantine Equations, C.U.P. (1986).Google Scholar
11. Shparlinski, I. E., On the distribution of recurrence sequences, Problemy Peredachi Inform. 25(1989), 46 53(in Russian).Google Scholar
12. Shorey, T. N. and Tijdeman, R. J., O chisle razlichnykh prostyhh delitelei rekurrentnyhh posledovateljnostei, Matem. Zametki, 42 (1987), 494—507; On the number of different prime divisors of recurring sequences, Math. Notes 42(1987), 775780.Google Scholar
13. Shorey, T. N. and Tijdeman, R. J., O nekotorykh arifmeticheskikh svoistvakh rekurrentnykh posledovateljnostei, Matem. Zametki, 47(1990), 124—131; On some arithmetical properties of recurring sequences, Math. Notes 47(1990).Google Scholar
14. Stewart, C. L., On the greatest prime factor of terms of a linear recurrence sequence, Rocky Mountain J. Math. 15(1985), 599608.Google Scholar