Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T03:36:22.106Z Has data issue: false hasContentIssue false

Derivations on Toeplitz Algebras

Published online by Cambridge University Press:  20 November 2018

Michael Didas
Affiliation:
Fachrichtung Mathematik, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany e-mail: [email protected]@math.uni-sb.de
Jörg Eschmeier
Affiliation:
Fachrichtung Mathematik, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany e-mail: [email protected]@math.uni-sb.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ${{H}^{2}}\left( \Omega \right)$ be the Hardy space on a strictly pseudoconvex domain $\Omega \,\subset \,{{\mathbb{C}}^{n}}$, and let $A\,\subset \,{{L}^{\infty }}\left( \partial \Omega \right)$ denote the subalgebra of all ${{L}^{\infty }}$-functions $f$ with compact Hankel operator ${{H}_{f}}$. Given any closed subalgebra $B\,\subset \,A$ containing $C\left( \partial \Omega \right)$, we describe the first Hochschild cohomology group of the corresponding Toeplitz algebra $\mathcal{T}\left( B \right)\,\subset \,B\left( {{H}^{2}}\left( \Omega \right) \right)$. In particular, we show that every derivation on $\mathcal{T}\left( A \right)$ is inner. These results are new even for $n\,=\,1$, where it follows that every derivation on $\mathcal{T}\left( {{H}^{\infty }}\,+\,C \right)$ is inner, while there are non-inner derivations on $\mathcal{T}\left( {{H}^{\infty }}\,+\,C\left( \partial {{\mathbb{B}}_{n}} \right) \right)$ over the unit ball ${{\mathbb{B}}_{n}}$ in dimension $n\,>\,1$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Aytuna, A. and Chollet, A. M., Une extension d’un résultat de W. Rudin. Bull. Soc. Math. France 104 (1976, no. 4, 383388.Google Scholar
[2] Cao, G., Toeplitz algebras on strongly pseudoconvex domains. Nagoya Math. J. 185 (2007, 171186.Google Scholar
[3] Dales, H. G., Banach algebras and automatic continuity. London Mathematical Society Monographs, New Series, 24, The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
[4] Davidson, K. R., On operators commuting with Toeplitz operators modulo the compact operators. J. Functional Analalysis 24 (1977, no. 3, 291302.http://dx.doi.org/10.1016/0022-1236(77)90060-X Google Scholar
[5] Davie, A. M. and Jewell, N. P., Toeplitz operators in several complex variables. J. Functional Analysis 26 (1977, no. 4, 356368.http://dx.doi.org/10.1016/0022-1236(77)90020-9 Google Scholar
[6] Didas, M., Every continuous derivation of T(H1 + C(T)) is inner. Preprint Nr. 317, Department of Mathematics, Saarland University. http://www.math.uni-sb.de/service/preprints/preprint317.pdfGoogle Scholar
[7] Didas, M., Eschmeier, J., and Everard, K., On the essential commutant of analytic Toeplitz operators associated with spherical isometries. J. Functional Analysis 261 (2011, no. 5, 13611383.http://dx.doi.org/10.1016/j.jfa.2011.05.005 Google Scholar
[8] Ding, X. and Sun, S., Essential commutant of analytic Toeplitz operators. Chinese Sci. Bull. 42 (1997, no. 7, 548552.http://dx.doi.org/10.1007/BF03182613 Google Scholar
[9] Hartman, P., On completely continuous Hankel operators. Proc. Amer. Math. Soc. 9 (1958, 862866.http://dx.doi.org/10.1090/S0002-9939-1958-0108684-8 Google Scholar
[10] Jewell, N. P. and Krantz, S. G., Toeplitz operators and related function algebras on certain pseudoconvex domains. Trans. Amer. Math. Soc. 252 (1979, 297312.http://dx.doi.org/10.1090/S0002-9947-1979-0534123-7 Google Scholar
[11] Sakai, S., C*-algebras and W*-algebras. Springer, Berlin, 1971.Google Scholar
[12] Singer, I. M. and Wermer, J., Derivations on commutative normed algebras. Math. Ann. 129 (1955, 260264.http://dx.doi.org/10.1007/BF01362370 Google Scholar
[13] Upmeier, H., Toeplitz operators and index theory in several complex variables. Operator Theory: Advances and Applications, 81, Birkhäuser Verlag, Basel, 1996.Google Scholar