Published online by Cambridge University Press: 11 January 2019
Let $\unicode[STIX]{x1D707}$ be a positive finite Borel measure on the unit circle and ${\mathcal{D}}(\unicode[STIX]{x1D707})$ the associated harmonically weighted Dirichlet space. In this paper we show that for each closed subset $E$ of the unit circle with zero $c_{\unicode[STIX]{x1D707}}$-capacity, there exists a function $f\in {\mathcal{D}}(\unicode[STIX]{x1D707})$ such that $f$ is cyclic (i.e., $\{pf:p\text{ is a polynomial}\}$ is dense in ${\mathcal{D}}(\unicode[STIX]{x1D707})$), $f$ vanishes on $E$, and $f$ is uniformly continuous. Next, we provide a sufficient condition for a continuous function on the closed unit disk to be cyclic in ${\mathcal{D}}(\unicode[STIX]{x1D707})$.