Article contents
Cup Products in Sheaf Cohomology
Published online by Cambridge University Press: 20 November 2018
Abstract
Let k be an algebraically closed field, and let l be a prime number not equal to char(k). Let X be a locally fibrant simplicial sheaf on the big étale site for k, and let Y be a k scheme which is cohomologically proper. Then there is a Künneth-type isomorphism
which is induced by an external cup-product pairing. Reductive algebraic groups G over k are cohomologically proper, by a result of Friedlander and Parshall. The resulting Hopf algebra structure on may be used together with the Lang isomorphism to give a new proof of the theorem of Friedlander-Mislin which avoids characteristic 0 theory. A vanishing criterion is established for the Friedlander-Quillen conjecture.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1986
References
- 3
- Cited by