Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T23:16:02.507Z Has data issue: false hasContentIssue false

Constructive Proof of the Carpenter's Theorem

Published online by Cambridge University Press:  20 November 2018

Marcin Bownik
Affiliation:
Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA e-mail: [email protected]
John Jasper
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211-4100, USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a constructive proof of the carpenter's theorem due to Kadison. Unlike the original proof, our approach also yields the real case of this theorem.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

[1] Argerami, M., Majorisation and Kadison's Carpenter's Theorem. Preprint, arxiv:1304.1232.Google Scholar
[2] Argerami, M. and Massey, P., Towards the Carpenter's theorem. Proc. Amer. Math. Soc. 137 (2009), 36793687. http://dx.doi.org/10.1090/S0002-9939-09-09999-7 Google Scholar
[3] Arveson, W., Diagonals of normal operators with finite spectrum. Proc. Natl. Acad. Sci. USA 104 (2007), 11521158. http://dx.doi.org/10.1073/pnas.0605367104 Google Scholar
[4] Arveson, W. and Kadison, R., Diagonals of self-adjoint operators. In: Operator theory, operator algebras, and applications, Contemp. Math. 414, Amer. Math. Soc., Providence, RI, 2006, 247263.Google Scholar
[5] de Boor, C., DeVore, R. A., and Ron, A., The structure of finitely generated shift-invariant spaces in L2(Rd). J. Funct. Anal. 119 (1994), 3778. http://dx.doi.org/10.1006/jfan.1994.1003 Google Scholar
[6] de Boor, C., DeVore, R. A., and Ron, A., Approximation orders of FSI spaces in L2(Rd). Constr. Approx. 14 (1998), 631652. http://dx.doi.org/10.1007/s003659900094 Google Scholar
[7] Bownik, M., The structure of shift-invariant subspaces of L2(Rn). J. Funct. Anal. 177 (2000), 282309. http://dx.doi.org/10.1006/jfan.2000.3635 Google Scholar
[8] Bownik, M. and Jasper, J., Characterization of sequences of frame norms. J. Reine Angew. Math. 654 (2011), 219244.Google Scholar
[9] Bownik, M. and Rzeszotnik, Z., The spectral function of shift-invariant spaces. Michigan Math. J. 51 (2003), 387414. http://dx.doi.org/10.1307/mmj/1060013204 Google Scholar
[10] Casazza, P., Fickus, M., Mixon, D., Wang, Y., and Zhou, Z., Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30 (2011), 175187. http://dx.doi.org/10.1016/j.acha.2010.05.002 Google Scholar
[11] Casazza, P., Heinecke, A., Kornelson, K., Wang, Y., and Zhou, Z., Necessary and sufficient conditions to perform Spectral Tetris. Linear Algebra Appl., to appear. http://dx.doi.org/10.1016/j.laa.2012.10.030 Google Scholar
[12] Helson, H., Lectures on invariant subspaces. Academic Press, New York–London, 1964.Google Scholar
[13] Horn, A., Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math. 76 (1954), 620630. http://dx.doi.org/10.2307/2372705 Google Scholar
[14] Kadison, R., The Pythagorean theorem. I. The finite case. Proc. Natl. Acad. Sci. USA 99 (2002), 41784184. http://dx.doi.org/10.1073/pnas.032677199 Google Scholar
[15] Kadison, R., The Pythagorean theorem. II. The infinite discrete case. Proc. Natl. Acad. Sci. USA 99 (2002), 52175222. http://dx.doi.org/10.1073/pnas.032677299 Google Scholar
[16] Kaftal, V. and Weiss, G., A survey on the interplay between arithmetic mean ideals, traces, lattices of operator ideals, and an infinite Schur–Horn majorization theorem. In: Hot topics in operator theory, Theta Ser. Adv. Math. 9, Theta, Bucharest, 2008, 101135.Google Scholar
[17] Kaftal, V. and Weiss, G., An infinite dimensional Schur–Horn theorem and majorization theory. J. Funct. Anal. 259 (2010), 31153162. http://dx.doi.org/10.1016/j.jfa.2010.08.018 Google Scholar
[18] Marshall, A.W., Olkin, I., and Arnold, B. C., Inequalities: theory of majorization and its applications. Second edition. Springer Series in Statistics. Springer, New York, 2011.Google Scholar
[19] Ron, A. and Shen, Z., Affine systems in L2(Rd): the analysis of the analysis operator. J. Funct. Anal. 148 (1997), 408447. http://dx.doi.org/10.1006/jfan.1996.3079 Google Scholar
[20] Ron, A. and Shen, Z., Weyl–Heisenberg frames and Riesz bases in L2(Rd). Duke Math. J. 89 (1997), 237282. http://dx.doi.org/10.1215/S0012-7094-97-08913-4 Google Scholar
[21] Schur, I., Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsber. Berl. Math. Ges. 22 (1923), 920.Google Scholar