We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that the conjugate function operator is bounded in Lp(Г, wds), 1 < p < ∞, if and only if w ∈ Ap(Г), where Г is a quasiregular curve.
1.Coifman, R. R. and Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math.51 (1974), pp. 241–249.Google Scholar
2
2.Garnett, J. B. and Jones, P., The distance in BMO to L∞, Ann. of Math. II. Ser. 108, (1978), pp. 373–393.Google Scholar
3
3.Jerison, D. S. and Kenig, C. E., Hardy Spaces. A∞ and Singular Integrals on Chord-arc Domains, Math. Scand.50 (1982), pp. 221–247.Google Scholar
4
4.Jones, P. and Zinsmeister, M., Sur la transformation conforme des domaines de Laurentiev, C. R. Acad. Sci. (Paris)295 (1982), pp. 563–566.Google Scholar
5
5.Pommerenke, Ch., Schlichte functionen und analytische functionen von beschrankter mittlerer oszillation, Comm. Math. Helv.52 (1977), pp. 591–602.Google Scholar
6
6.Zinsmeister, M., Courbes de Jordan vérifiant une condition corde-arc, Ann. Inst. Fourier32, No. 2, (1982), pp. 13–21.Google Scholar
7
7.Zygmund, A., Trigonometric Series, Cambridge Univ. Press, London, New York, 1959.Google Scholar