Published online by Cambridge University Press: 20 November 2018
The congruences of a finite sectionally complemented lattice $L$ are not necessarily uniform (any two congruence classes of a congruence are of the same size). To measure how far a congruence $\Theta $ of $L$ is from being uniform, we introduce Spec $\Theta $, the spectrum of $\Theta $, the family of cardinalities of the congruence classes of $\Theta $. A typical result of this paper characterizes the spectrum $S=({{m}_{j}}|j<n)$ of a nontrivial congruence $\Theta $ with the following two properties: