Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T01:09:19.025Z Has data issue: false hasContentIssue false

A Condition for Equality of Cardinals of Minimal Generators Under Closure Operators

Published online by Cambridge University Press:  20 November 2018

Japheth Hall Jr*
Affiliation:
Stillman College, Tuscaloosa, Alabama
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let C be an operator on the subsets of a set X with values among the subsets of X. We assume that C is a closure operator in X, i.e. a monotone, idempotent and extensive operator in X (cf., e.g., Birkhoff [3, p. 39], Schmidt [1], [2]). If A ⊆ X and B ⊆ X, we say that A and B are C-equivalent if C(A) = C(B) (Bleicher- Marczewski [4, p. 210]).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1971

References

1. Schmidt, J., Einige grundlegende Begriffe und Satz aus der Theorie der Hullenoperatoren, Bericht uber mathematische Tagung, Berlin (1953), 21-48.Google Scholar
2. Schmidt, J., Mehrstufige Austauschstrukturen, Z. Math. Logik Grundlagen Math. 2 (1956), 233-249.Google Scholar
3. Birkhoff, G., Lattice theory, rev. Ed., Colloq. Publ., Amer. Math. Soc, New York, 1948.Google Scholar
4. Bleicher, M. N. and Marczewski, E., Remarks on dependence relations and closure operators, Colloquium Mathematicum IX (1962), 209-211.Google Scholar
5. Bleicher, M. N. and Preston, B. B., Abstract linear dependence relations, Publ. Math. Debrecen 8 (1961), 55-63.Google Scholar
6. Taylor, A. E., Introduction to Functional Analysis, Wiley, New York, 1964.Google Scholar