Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T04:13:00.676Z Has data issue: false hasContentIssue false

Condition $C_{\hat{\ }}^{'}$, of Operator Spaces

Published online by Cambridge University Press:  20 November 2018

Yuanyi Wang*
Affiliation:
School of Information Engineering, College of Science and Technology, Ningbo University, Ningbo, China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we study condition $C_{\hat{\ }}^{'}$, which is a projective tensor product analogue of condition $C'$. We show that the finite-dimensional $\text{OLLP}$ operator spaces have condition $C_{\hat{\ }}^{'}$, and ${{M}_{n}}\left( n\,>\,2 \right)$ does not have that property.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Archbold, R. J. and Batty, C. J., C*-tensor norms and slice maps. J. London Math. Soc. 22(1980), no. 1, 127138. http://dx.doi.Org/10.1112/jlms/s2-22.1.127 Google Scholar
[2] Blecher, D. P., Tensor products of operator spaces. II. Canad. J. Math. 44(1992), no. 1, 7590. http://dx.doi.Org/10.4153/CJM-1992-004-5 Google Scholar
[3] Blecher, D. P. and Paulsen, V. I., Tensor products of operator spaces. J. Funct. Anal. 99(1991), 262292. http://dx.doi.Org/10.101 6/0022-1236(91 )90042-4 Google Scholar
[4] Dong, Z., The OLLP and 7-local reflexivity of operator spaces. Illinois J. Math. 51(2006), 11031122.Google Scholar
[5] Effros, E. G. and Haagerup, U., Lifting problems and local reflexivity for C*-algebras. Duke Math. J. 52(1985), 103128. http://dx.doi.Org/10.1215/S0012-7094-85-05207-X Google Scholar
[6] Effros, E. G., Junge, M., and Ruan, Z.-J., Integral mapping and the principle of local reflexive for non-commutative L1 spaces. Ann. of Math. 151(2000), no. 1, 59-92. http://dx.doi.Org/10.2307/121112 Google Scholar
[7] Effros, E. G. and Ruan, Z.-J., On approximation properties for operator spaces. Internat. J. Math. 1(1990), 163181. http://dx.doi.Org/10.1142/S01291 67X90000113 Google Scholar
[8] Effros, E. G. and Ruan, Z.-J., Mapping spaces and liftings for operator spaces. Proc. London Math. Soc. 69(1994), 171197. http://dx.doi.Org/10.1112/plms/s3-69.1.171 Google Scholar
[9] Effros, E. G. and Ruan, Z.-J., The Grothedieck-Pietsch and Dvoretzky-Rogers theory for operator spaces. J. Funct. Anal. 122(1994), 428450. http://dx.doi.Org/10.1006/jfan.1994.1075 Google Scholar
[10] Effros, E. G. and Ruan, Z.-J., On the analogues of integral mappings and local reflexivity for operator spaces. Indiana Univ. Math. J. 46(1997), 12891310. http://dx.doi.Org/10.1512/iumj.1997.46.1429 Google Scholar
[11] Effros, E. G. and Ruan, Z.-J., Operator spaces. London Mathematical Society Monographs. New Series, 23, The Clarendon Press, Oxford University Press, New York, 2000.Google Scholar
[12] Han, K. H., An operator space approach to condition C. J. Math. Anal. Appl. 336(2007), 569576. http://dx.doi.Org/10.1016/j.jmaa.2007.02.074 Google Scholar
[13] Kirchberg, E., The Fubini theory for exact C*-algebras. J. Operator Theory 10(1983), 38.Google Scholar
[14] Kirchberg, E., On non-semisplit extensions, tensor products and exactness of group C*-algebras. Invent. Math. 112(1993), 449489. http://dx.doi.Org/10.1007/BF01232444 Google Scholar
[15] Kirchberg, E., On subalgebras of the CAR-algebra. J. Funct. Anal. 129(1995), 3563. http://dx.doi.Org/10.1006/jfan.1 995.1041 Google Scholar
[16] Ozawa, N., On the lifting property for universal C*-algebras of operator spaces. J. Operator Theory 46(2001), no. 3, 579591.Google Scholar
[17] Pisier, G., Exact operator spaces. Recent advances in operator algebras (Orléans, 1992). Astérisque 233(1995), 159186.Google Scholar
[18] Pisier, G., Introduction to operator space theory. London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003. http://dx.doi.Org/10.1017/CBO9781107360235 Google Scholar
[19] Ruan, Z.-J., Subspaces of C*-algebras. J. Funct. Anal. 76(1988), 217230. http://dx.doi.Org/!0.1016/0022-1236(88)90057-2 Google Scholar