Published online by Cambridge University Press: 20 November 2018
A finite group is said to have deficiency zero if it can be presented with an equal number of generators and relations. Finite metacyclic groups of deficiency zero have been classified, see [1] or [6]. Finite non-metacyclic groups of deficiency zero, which we denote by FD0-groups, are relatively scarce. In [3] I. D. Macdonald introduced a class of nilpotent FD0-groups all having nilpotent class≤8. The largest nilpotent class known for a Macdonald group is 7 [4]. Only a finite number of nilpotent FD0-groups, other than the Macdonald groups, seem to be known [5], [7]. In this note we exhibit a class of FD0-groups which contains nilpotent groups of arbitrarily large nilpotent class.