Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:37:18.035Z Has data issue: false hasContentIssue false

A Cohomological Property of π-invariant Elements

Published online by Cambridge University Press:  20 November 2018

M. Filali
Affiliation:
Department of Mathematical Sciences, University of Oulu, Oulu 90014, Finland e-mail: [email protected]
M. Sangani Monfared
Affiliation:
Department of Mathematics and Statistics, University of Windsor, Windsor, ON N9B 3P4 e-mail: e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $A$ be a Banach algebra and let $\pi :\,A\,\to \,\mathcal{L}\left( H \right)$ be a continuous representation of $A$ on a separable Hilbert space $H$ with dim $H\,=\,\text{m}$. Let ${{\pi }_{ij}}$ be the coordinate functions of $\pi $ with respect to an orthonormal basis and suppose that for each $1\,\le \,j\,\le \,\text{m,}\,{{C}_{j}}\,=\,\sum\nolimits_{i=1}^{\text{m}}{\left\| {{\pi }_{ij}} \right\|}{{A}^{*}}\,<\,\infty $ and ${{\sup }_{j}}\,{{C}_{j}}\,<\,\infty $. Under these conditions, we call an element $\overline{\Phi }\,\in \,{{\iota }^{\infty }}\,\left( \mathfrak{m},\,{{A}^{**}} \right)$ left $\pi $-invariant if $a\,\cdot \overline{\Phi }\,={{\,}^{^{t}\pi }}\left( a \right)\overline{\Phi }$ for all $a\in A$ In this paper we prove a link between the existence of left $\pi $-invariant elements and the vanishing of certain Hochschild cohomology groups of $A$. Our results extend an earlier result by Lau on $F$-algebras and recent results of Kaniuth, Lau, Pym, and and the second author in the special case where $\pi :\,A\,\to \text{C}$ is a non-zero character on $A$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Arens, R., The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2 (1951, 839848. http://dx.doi.org/10.1090/S0002-9939-1951-0045941-1 Google Scholar
[2] Bonsall, F. F. and Duncan, J., Complete normed algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer-Verlag, New York-Heidelberg, 1973.Google Scholar
[3] Dales, H. G., Banach algebras and automatic continuity. LondonMathematical SocietyMonographs. New Series, 24, Oxford Uinversity Press, Oxford, 2000.Google Scholar
[4] Dunford, N. and Schwartz, J. T., Linear operators. Part I. General theory. JohnWiley & Sons, New York, 1988.Google Scholar
[5] Filali, M. and Monfared, M. S., Finite-dimensional left ideals in the dual of introverted spaces. Proc. Amer. Math. Soc. 139 (2011, no. 10, 36453656. http://dx.doi.org/10.1090/S0002-9939-2011-10784-6 Google Scholar
[6] Kaniuth, E., Lau, A. T., and Pym, J., On ζ-Amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (2008, no. 1, 8596.Google Scholar
[7] Lau, A. T.-M., Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fund. Math. 118 (1983, no. 3, 161175.Google Scholar
[8] Lau, A. T.-M. and Zhang, Y., Fixed point properties of semigroups of non-expansive mappings. J. Funct. Anal. 254 (2008, no. 10, 25342554. http://dx.doi.org/10.1016/j.jfa.2008.02.006 Google Scholar
[9] Sangani Monfared, M., Character amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144 (2008, no. 3, 697706. http://dx.doi.org/10.1017/S0305004108001126 Google Scholar