No CrossRef data available.
Article contents
Coefficient Inequalities for Lp-Valued Analytic Functions
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A Hausdorff-Young theorem is given for Lp-valued analytic functions on the open unit disc and estimates on such functions and their derivatives are deduced.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1981
References
2.
Dunford, N. and Schwartz, J. T., Linear Operators,
Interscience, New York, pt. I, 1958.Google Scholar
4.
Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities,
Cambridge University Press, London, 1934.Google Scholar
5.
Harris, L., Bounds on the derivatives of holomorphic functions of vectors,
Proc. Colloq. Analysis, Rio de Janeiro, 1972, 145-163, Nachbin, L., Ed., Act. Sci. et Ind. Paris: Hermann, 1975.Google Scholar
6.
Hayden, T. and Wells, J., On the extension of Lipschitz-Hôlder maps of order a, J. Math. Anal. Appl. 33 (1971), 627-640.Google Scholar
7.
Hille, E. and Phillips, R. S., Functional Analysis and Semi-Groups,
Amer. Math. Soc. Colloq. Publ. 31, Providence, 1957.Google Scholar
8.
Kestelman, H., Modern Theories of Integration,
Oxford University Press, London
1937.Google Scholar
9.
Renaud, A., Quelques propriétés des applications analytiques d'une boule de dimension
infinie dans une autre, Bull. Sci. Math. 97 (1973), 129-159.Google Scholar
10.
Titchmarsh, E. C., The Theory of Functions,
Oxford University Press, 2nded., London
1939.Google Scholar
11.
Williams, L. R. and Wells, J. H., Lp inequalities, J. Math. Anal. Appl. 64 (1978), 518-529.Google Scholar
You have
Access