Published online by Cambridge University Press: 02 September 2020
For an integer
$n\geq 8$
divisible by
$4$
, let
$R_n={\mathbb Z}[\zeta _n,1/2]$
and let
$\operatorname {\mathrm {U_{2}}}(R_n)$
be the group of
$2\times 2$
unitary matrices with entries in
$R_n$
. Set
$\operatorname {\mathrm {U_2^\zeta }}(R_n)=\{\gamma \in \operatorname {\mathrm {U_{2}}}(R_n)\mid \det \gamma \in \langle \zeta _n\rangle \}$
. Let
$\mathcal {G}_n\subseteq \operatorname {\mathrm {U_2^\zeta }}(R_n)$
be the Clifford-cyclotomic group generated by a Hadamard matrix
$H=\frac {1}{2}[\begin {smallmatrix} 1+i & 1+i\\1+i &-1-i\end {smallmatrix}]$
and the gate
$T_n=[\begin {smallmatrix}1 & 0\\0 & \zeta _n\end {smallmatrix}]$
. We prove that
$\mathcal {G}_n=\operatorname {\mathrm {U_2^\zeta }}(R_n)$
if and only if
$n=8, 12, 16, 24$
and that
$[\operatorname {\mathrm {U_2^\zeta }}(R_n):\mathcal {G}_n]=\infty $
if
$\operatorname {\mathrm {U_2^\zeta }}(R_n)\neq \mathcal {G}_n$
. We compute the Euler–Poincaré characteristic of the groups
$\operatorname {\mathrm {SU_{2}}}(R_n)$
,
$\operatorname {\mathrm {PSU_{2}}}(R_n)$
,
$\operatorname {\mathrm {PU_{2}}}(R_n)$
,
$\operatorname {\mathrm {PU_2^\zeta }}(R_n)$
, and
$\operatorname {\mathrm {SO_{3}}}(R_n^+)$
.