Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T22:25:25.015Z Has data issue: false hasContentIssue false

The Clifford-cyclotomic group and Euler–Poincaré characteristics

Published online by Cambridge University Press:  02 September 2020

Colin Ingalls
Affiliation:
School of Mathematics and Statistics, Carleton University, Ottawa, ONK1S 5B6, Canadae-mail:[email protected]
Bruce W. Jordan
Affiliation:
Department of Mathematics, Box B-630, Baruch College, The City University of New York, One Bernard Baruch Way, New York, NY10010, USAe-mail:[email protected]
Allan Keeton*
Affiliation:
Center for Communications Research, 805 Bunn Drive, Princeton, NJ08540, USAe-mail:[email protected]
Adam Logan
Affiliation:
The Tutte Institute for Mathematics and Computation, P.O. Box 9703, Terminal, Ottawa, ONK1G 3Z4, Canada School of Mathematics and Statistics, Carleton University, Ottawa, ONK1S 5B6, Canadae-mail:[email protected]
Yevgeny Zaytman
Affiliation:
Center for Communications Research, 805 Bunn Drive, Princeton, NJ08540, USAe-mail:[email protected]

Abstract

For an integer $n\geq 8$ divisible by $4$ , let $R_n={\mathbb Z}[\zeta _n,1/2]$ and let $\operatorname {\mathrm {U_{2}}}(R_n)$ be the group of $2\times 2$ unitary matrices with entries in $R_n$ . Set $\operatorname {\mathrm {U_2^\zeta }}(R_n)=\{\gamma \in \operatorname {\mathrm {U_{2}}}(R_n)\mid \det \gamma \in \langle \zeta _n\rangle \}$ . Let $\mathcal {G}_n\subseteq \operatorname {\mathrm {U_2^\zeta }}(R_n)$ be the Clifford-cyclotomic group generated by a Hadamard matrix $H=\frac {1}{2}[\begin {smallmatrix} 1+i & 1+i\\1+i &-1-i\end {smallmatrix}]$ and the gate $T_n=[\begin {smallmatrix}1 & 0\\0 & \zeta _n\end {smallmatrix}]$ . We prove that $\mathcal {G}_n=\operatorname {\mathrm {U_2^\zeta }}(R_n)$ if and only if $n=8, 12, 16, 24$ and that $[\operatorname {\mathrm {U_2^\zeta }}(R_n):\mathcal {G}_n]=\infty $ if $\operatorname {\mathrm {U_2^\zeta }}(R_n)\neq \mathcal {G}_n$ . We compute the Euler–Poincaré characteristic of the groups $\operatorname {\mathrm {SU_{2}}}(R_n)$ , $\operatorname {\mathrm {PSU_{2}}}(R_n)$ , $\operatorname {\mathrm {PU_{2}}}(R_n)$ , $\operatorname {\mathrm {PU_2^\zeta }}(R_n)$ , and $\operatorname {\mathrm {SO_{3}}}(R_n^+)$ .

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bocharov, A., Roetteler, M., and Svore, K. M., Efficient synthesis of probabilistic quantum circuits with fallback. Phys. Rev. A 91(2015), 052317.CrossRefGoogle Scholar
Brown, K. S., Cohomology of groups . Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.Google Scholar
Forest, S., Gosset, D., Kliuchnikov, V., and McKinnon, D., Exact synthesis of single-qubit unitaries over Clifford-cyclotomic gate sets. J. Math. Phys. 56(2015), no. 8, 082201. http://arxiv.org/abs/10.1063/1.4927100 CrossRefGoogle Scholar
Ingalls, C., Jordan, B. W., Keeton, A., Logan, A., and Zaytman, Y., The corank of unitary groups over cyclotomic rings. Preprint, 2019. arXiv:1911:02137.Google Scholar
Ingalls, C., Jordan, B. W., Keeton, A., Logan, A., and Zaytman, Y., Quotient graphs and amalgam presentations for unitary groups over cyclotomic rings. Preprint, 2020. arXiv:2001:01695.CrossRefGoogle Scholar
Naber, G. L., Topology, geometry, and gauge fields. 2nd ed., Texts in Applied Mathematics, 25, Springer, New York, 2011. http://arxiv.org/abs/10.1007/978-1-4419-7254-5 Google Scholar
Neukirch, J., Algebraic number theory. Grundlehren der Mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999. http://arxiv.org/abs/10.1007/978-3-662-0398-0 Google Scholar
Nielsen, M. A. and Chuang, I. L., Quantum computation and quantum information. Cambridge University Press, Cambridge, 2000.Google Scholar
Radin, C. and Sadun, L., On $2$ -generator subgroups of SO(3). Trans. Amer. Math. Soc. 351(1999), no. 11, 44694480. http://arxiv.org/abs/10.1090/S0002-9947-99-02397-1 CrossRefGoogle Scholar
Sarnak, P., Letter to Scott Aaronson and Andy Pollington on the Solovay-Kitaev theorem and golden gates, 2015. http://publications.ias.edu/sarnak/paper/2637 Google Scholar
Serre, J.-P., Cohomologie des groups discrets. Prospects in Mathematics (Proc. Sympos., Princeton Univ., Princeton, NJ, 1970), Ann. of Math. Studies, 70, 1971, pp. 77169.CrossRefGoogle Scholar
Serre, J.-P., Le groupe quaquaversal, vu comme groupe S-arithmétique. Oberwolfach Rep. 6 (2009), no. 2, 14211426.Google Scholar
Vignéras, M.-F., Arithmétique des algébres de quaternions. Lecture Notes in Mathematics, 800, Springer, Berlin, 1980.CrossRefGoogle Scholar
Washington, L. C., Introduction to cyclotomic fields. Graduate Texts in Mathematics, 83, Springer-Verlag, Berlin, 1982. http://arxiv.org/abs/10.1007/978-1-4684-0133-2 Google Scholar
Weber, H., Lehrbuch der Algebra. Vol. II. Zweite Auflage, Vieweg, Braunschweig, 1899.Google Scholar