Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T19:47:21.838Z Has data issue: false hasContentIssue false

Characterizations and Representations of Core and Dual Core Inverses

Published online by Cambridge University Press:  20 November 2018

Jianlong Chen
Affiliation:
Department of Mathematics, Southeast University, Nanjing 210096, China. e-mail: [email protected], [email protected]
Huihui Zhu
Affiliation:
Department of Mathematics, Southeast University, Nanjing 210096, China. e-mail: [email protected], [email protected] CMAT-Centro de Matemática, Universidade do Minho, Braga 4710-057, Portugal
Pedro Patricio
Affiliation:
Departamento de Matemática e Aplicações, Universidade do Minho, Braga 4710-057, Portugal. e-mail: [email protected], [email protected] CMAT-Centro de Matemática, Universidade do Minho, Braga 4710-057, Portugal
Yulin Zhang
Affiliation:
Departamento de Matemática e Aplicações, Universidade do Minho, Braga 4710-057, Portugal. e-mail: [email protected], [email protected] CMAT-Centro de Matemática, Universidade do Minho, Braga 4710-057, Portugal
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, double commutativity and the reverse order law for the core inverse are considered. Then new characterizations of the Moore–Penrose inverse of a regular element are given by one-sided invertibilities in a ring. Furthermore, the characterizations and representations of the core and dual core inverses of a regular element are considered.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Baksalary, O. M., Problem 48-1: reverse order law for the core inverse. Image 48(2012), 40. Google Scholar
[2] Baksalary, O. M. and Trenkler, G., Core inverse of matrices. Linear Multilinear Algebra 58(2010), 681697. http://dx.doi.org/10.1080/03081080902778222 Google Scholar
[3] Cohen, N., Herman, E. A., and Jayaraman, S., Solution to problem 48-1: reverse order law for the core inverse. Image 49(2012), 4647. Google Scholar
[4] Drazin, M. P., Commuting properties of generalized inverses. Linear Multilinear Algebra 61(2013), no. 12, 16751681. http://dx.doi.org/10.1080/03081087.2012.753593 Google Scholar
[5] Hartwig, R. E., Block generalized inverses. Arch. Rational Mech. Anal. 61(1976), no. 3,197-251. http://dx.doi.org/10.1007/BF00281485 Google Scholar
[6] Patricio, P. and Mendes Araiijo, C., Moore-Penrose inverse in involutory rings: the case aa = btf. Linear Multilinear Algebra 58(2010), 445452. http://dx.doi.org/10.1080/03081080802652279 Google Scholar
[7] Penrose, R., A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51(1955), 406413. http://dx.doi.org/10.101 7/S0305004100030401 Google Scholar
[8] Puystjens, R. and Hartwig, R.E., The group inverse of a companion matrix. Linear Multilinear Algebra 43(1997), 137150. http://dx.doi.org/10.1080/0308108970881 8521 Google Scholar
[9] Rakic, D. S., Dincic, N. C., and Djordjevic, D. S., Group, Moore-Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463(2014), 115133. http://dx.doi.org/10.1016/j.laa.2O14.09.003 Google Scholar
[10] Xu, S. Z., Chen, J. L., and Zhang, X. X., New characterizations for core inverses in rings with involution. arxiv:1512.08073v1 Google Scholar
[11] Zhu, H., Chen, J., and Patricio, P., Further results on the inverse along an element in semigroups and rings. Linear Multilinear Algebra 64(2016), 393403. http://dx.doi.org/10.1080/03081087.2015.1043716 Google Scholar
[12] Zhu, H., Chen, J., and Patricio, P., Reverse order law for the inverse along an element. Linear Multilinear Algebra, to appear. http://dx.doi.org/!0.1080/03081087.2016.1178209 Google Scholar