Published online by Cambridge University Press: 20 November 2018
Let L1, L2 ⊂ Cn be two totally real subspaces of real dimension n, and such that L1 ∩ L2 = {0}. We show that continuous functions on L1 ∪L2 allow Carleman approximation by entire functions if and only if L1 ∪L2 is polynomially convex. If the latter condition is satisfied, then a function f:L1 ∪L2 —> C such that f|LiCk(Li), i = 1,2, allows Carleman approximation of order k by entire functions if and only if f satisfies the Cauchy-Riemann equations up to order k at the origin.