Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T09:07:52.606Z Has data issue: false hasContentIssue false

Cancellation of Cusp Forms Coefficients over Beatty Sequences on GL(m)

Published online by Cambridge University Press:  20 November 2018

Qingfeng Sun*
Affiliation:
Department of Mathematics, Shandong University, Jinan, Shandong 250100, Chinae-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $A({{n}_{1}},\,{{n}_{2}},\ldots ,\,{{n}_{m}}-1)$ be the normalized Fourier coefficients of a Maass cusp form on $\text{GM(}m\text{)}$. In this paper, we study the cancellation of $A({{n}_{1}},\,{{n}_{2}},\ldots ,\,{{n}_{m}}-1)$ over Beatty sequences.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Banks, W. and Shparlinski, I. E., Character sums with Beatty sequences on Burgess-type intervals. In: Analytic Number Theory, Cambridge University Press, Cambridge, 2009, pp. 1521.Google Scholar
[2] Bump, D., Automorphic Forms on GL(3, R). Lecture Notes in Mathematics 1083, Springer-Verlag, Berlin, 1984.Google Scholar
[3] Blomer, V., Sums of Hecke eigenvalues over quadratic polynomials. Int. Math. Res. Not. (2008), no. 16.Google Scholar
[4] Deligne, P., La conjecture de Weil. I.. Inst. Hautes Études Sci. Publ. Math. 43(1974), 273307.Google Scholar
[5] Epstein, C., Hafner, J. L., and Sarnak, P., Zeros of L-functions attached to Maass forms. Math. Z. 190(1985), no. 1, 113128. doi:10.1007/BF01159169Google Scholar
[6] Goldfeld, D., Automorphic Forms and L-Functions for the Group GL(n, R). Cambridge Studies in Advanced Mathematics 99, Cambridge University Press, Cambridge, 2006.Google Scholar
[7] Good, A., Beiträge zur Theorie der Dirichletreihen, die spitzenformen zugeordnet sind. J. Number Theory 13(1981), no. 1, 1865. doi:10.1016/0022-314X(81)90028-7Google Scholar
[8] Hafner, J. L., Some remarks on odd Maass wave form. (and a correction to [5]). Math. Z. 196(1987), no. 1, 129132. doi:10.1007/BF01179274Google Scholar
[9] Kurpers, L. and Niederreiter, H., Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience, New York, 1974.Google Scholar
[10] Lang, S., Introduction to Diophantine Approximations. Addison-Wesley, Reading, MA, 1966 Google Scholar
[11] Lao, H. X., Oscillations of coefficients of primitive cusp form over some special sequences. Ramanujan J. 19(2009), no. 3, 339350. doi:10.1007/s11139-008-9128-yGoogle Scholar
[12] Miller, S. D., Cancellation in additive twisted sums on GL(n) . Amer. J. Math. 128(2006), no. 3, 699729. doi:10.1353/ajm.2006.0027Google Scholar
[13] Roth, K. F., Rational approximations to algebraic numbers.. Mathematika 2(1950), 120, corrigendum, 168. doi:10.1112/S0025579300000644Google Scholar
[14] Vinogradov, I. M., The Method of Trigonometrical Sums in the Theory of Numbers. Dover Publications, Mineola, NY, 2004.Google Scholar