Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-30T11:23:13.880Z Has data issue: false hasContentIssue false

Backward Continued Fractions and their Invariant Measures

Published online by Cambridge University Press:  20 November 2018

Karlheinz Gröchenig
Affiliation:
Department of Mathematics, The University of Connecticut, Storrs, Connecticut 06269-3009, U.S.A. e-mail:[email protected]:[email protected]
Andrew Haas
Affiliation:
Department of Mathematics, The University of Connecticut, Storrs, Connecticut 06269-3009, U.S.A. e-mail:[email protected]:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper continues our investigation of backward continued fractions, associated with the generalized Renyi maps on [0,1). We first show that the dynamics of the shift map on a specific class of shift invariant spaces of nonnegative integer sequences exactly models the maps Tu for u € (0,4). In the second part we construct a new family of explicit invariant measures for certain values of the parameter u.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

1. Adler, R. L. and Flatto, L., Cross-section maps for geodesic flows. In: Ergodic Theory and Dynamical Systems, Progress in Math. 2, (éd. A. Katok), Birkhäuser, Boston, 1980.Google Scholar
2. Adler, R. L. and Flatto, L., The backward continued fraction map and the geodesic flow, Ergodic Theory Dynamical Systems 4(1984), 487492.Google Scholar
3. Adler, R. L. and Flatto, L., Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. 25(1991), 229334.Google Scholar
4. Grôchenig, K. and Haas, A., Backward continued fractions, Hecke groups and invariant measures for transformations of the interval, Ergodic Theory Dynamical Systems, to appear.Google Scholar
5. Hofbauer, F., On the intrinsic ergodicity ofpiecewise monotonie transformations with positive entropy, Israel J. Math. 34(1979), 213237.Google Scholar
6. Hofbauer, F., The structure of piecewise monotonie transformations, Ergodic Theory Dynamical Systems 1(1981), 159178.Google Scholar
7. de Melo, W. and van Strien, S., One-Dimensional Dynamics, Ergebnisse d. Math. Vol. 25, Springer, Berlin, Heidelberg, 1993.Google Scholar
8. Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Hungary 8( 1957), 477493.Google Scholar
9. Rényi, A., Valòs szàmok elöàllità sàraszölgàlò algoritmusokròl, M. T. A. Mat. Oszt. Kzl. 7(1957), 265—293.Google Scholar
10. Rychlik, M., Bounded variation and invariant measures, Studia Math. 76(1983), 6980.Google Scholar
11. Salem, R., On some singular monotonie functions which are strictly increasing, Trans. Amer. Math. Soc. 53(1943), 427439.Google Scholar
12. Schweiger, F., Invariant measures of generalized Renyi maps, Univ. Salzburg, 1993, preprint.Google Scholar
13. Series, C., The modular group and continued fractions, J. London Math. Soc. 31(1985), 6980.Google Scholar
14. Thaler, M., Transformations on [0,1] with infinite invariant measure, Israel J. Math. 46(1983), 67—96.Google Scholar