Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T23:21:02.404Z Has data issue: false hasContentIssue false

The Absolute Galois Group of a Rational Function Field in Characteristic Zero is a Semi-Direct Product

Published online by Cambridge University Press:  20 November 2018

Lou Van Den Dries
Affiliation:
Stanford University, Stanford, Cal., U.S.A.
Paulo Ribenboim
Affiliation:
Queen’s University, Kingston, Ontario K76L 3N6, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a field of characteristic 0 and t an indeterminate. It is shown that the absolute Galois group of K(t) is the semi-direct product of a free profinite group with the absolute Galois group of K.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1984

References

1. Douady, A., Détermination d’un groupe de Galois. C.R. Acad. Sci. Paris, 258, 1964, 53055308.Google Scholar
2. van den Dries, L. and Ribenboim, P., Application de la théorie des modèles aux groupes de Galois de corps de fonctions. C. R. Acad. Sci. Paris, 288, 1979, 789792.Google Scholar
3. van den Dries, L. and Ribenboim, P., Lefschetz principle in Galois theory. Queen’s Math. Preprint, No. 1976–5.Google Scholar
4. Krull, W. and Neukirch, J., Die Struktur der absoluten Galois gruppe über dem Korper ℝ(t). Math. Ann., 193, 1971, 197209.Google Scholar
5. Ribes, L., Introduction to Profinite Groups and Galois Cohomology. Queen’s Papers in Pure and Applied Mathematics, 24, 1970, Kingston, Ontario, Canada.Google Scholar
6. Walker, R. J., Algebraic Curves. Princeton Univ. Press, 1950.Google Scholar