Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T14:24:02.287Z Has data issue: false hasContentIssue false

Insulin and Serum-stimulated Hexose Transport in In Vitro Aged Cultured Human Skin Fibroblasts

Published online by Cambridge University Press:  29 November 2010

Ralph J. Germinario
Affiliation:
Lady Davis Institute for Medical Research, Sir Mortimer B. Davis—Jewish General Hospital, Montreal, Quebec
Maureen Oliveira
Affiliation:
Lady Davis Institute for Medical Research, Sir Mortimer B. Davis—Jewish General Hospital, Montreal, Quebec
Susannia Manuel
Affiliation:
Lady Davis Institute for Medical Research, Sir Mortimer B. Davis—Jewish General Hospital, Montreal, Quebec

Abstract

Insulin (0.67 μM) and serum (10% v/v) stimulated hexose transport did not change with in vitro ageing of cultured human skin fibroblasts. Additionally, dexamethasone amplification of the insulin-stimulated response which yielded responses to near physiological concentrations of insulin (i.e. 6.7 nM), showed no changes with in vitro ageing. Basal (i.e. nonstimulated) hexose transport, either in the presence or absence of dexamethasone, did not change with in vitro ageing. The in vitro loss of proliferative potential during in vitro ageing of cultured human fibroblasts probably does not involve changes in short term insulin responses (e.g. stimulation of hexose transport).

Résumé

Le transport de l'hexose stimulé par l'insuline 0,67 μM et le sérum (10% v/v) n'a pas été modifié par le vieillissement in vitro des fibroblastes du tissu cutané humain. De plus, l'amplification par la dexaméthasone de la réponse stimulée par l'insuline qui a abouti à des réponses aux concentrations d'insuline voisines du niveau physiologique (c'est-à-dire non stimulé) de l'hexose, que ce soit en présence ou en l'absence de la dexaméthasone, n'a pas changé dans l'expérience du vieillissement in vitro. La perte du pouvoir prolifératif au cours de l'expérience du vieillissement in vitro des fibroblastes du tissu cutané humain n'entraîne probablement pas de modifications dans les réponses à court terme à l'insuline (c'est-à-dire dans la stimulations du transport de l'hexose).

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baxter, J.D. (1978). Mechanisms of glucocorticoid inhibition of growth. Kidney Inter., 14, 330335.CrossRefGoogle ScholarPubMed
Cristofalo, V.J. (1972). Animal cells cultures as model systems for the study of aging. Adv. Geront. Res., 4, 4579.Google Scholar
Eagle, H. (1959). Amino acid metabolism in mammalian cell cultures. Science. 130, 432437.CrossRefGoogle ScholarPubMed
Gelehrter, T., Filworth, V., Valka, B., McDonald, R. & Schorry, E. (1981). Insulin binding and insulin action in fibroblasts from patients with maturity-onset diabetes of the young. Diabetes, 30, 940946.CrossRefGoogle ScholarPubMed
Germinario, R.J., Oliveira, M. & Leung, H. (1978). Saturable and non-saturable hexose uptake in cultured human skin fibroblasts. Can. J. Biochem., 56, 8088.CrossRefGoogle Scholar
Germinario, R.J. & Oliveira, M. (1979). Stimulation of hexose transport in cultured human skin fibroblasts by insulin. J. Cell. Physiol., 99, 313318.CrossRefGoogle ScholarPubMed
Germinario, R.J., Oliveira, M. & Taylor, M. (1980). Studies on the effects of in vitro ageing on saturable and non-saturable sugar uptake in cultured human skin fibroblasts. Gerontology, 26, 181187.CrossRefGoogle Scholar
Germinario, R.J., McQuillan, A., Oliveira, M. & Manuel, S. (1983). Enhanced insulin stimulation of sugar transport and DNA synthesis by glucocorticoids in cultured human skin fibroblasts. Arch. Biochem. Biophys., 226, 498505.CrossRefGoogle ScholarPubMed
Germinario, R.J. & McQuillan, A. (1985). Glucocorticoid-induced modulation of insulin-stimulated DNA synthesis: Differntial responsiveness in cell cultures derived from donors of different ages. Gerontology 31, 6575.CrossRefGoogle Scholar
Goldstein, S. (1971). The biology of aging. N. Engl. J. Med., 285, 11201129.CrossRefGoogle ScholarPubMed
Hayflick, L. (1975). Cell biology of aging. Biol. Sci., 25, 627637.Google Scholar
Hayflick, L. & Moorhead, S. (1961). The serial cultivation of human diploid cell strains. Exptl. Cell Res. 25, 585621.CrossRefGoogle ScholarPubMed
Hidaka, H., Howard, B., Ishibashi, F., Kosmakos, F.C., Craig, J.W., Bennett, P.H. & Larner, J. (1981). Effect of pH and 3-hydroxybutyrate on insulin binding and action in cultured human fibroblasts. Diabetes, 30, 402406.CrossRefGoogle ScholarPubMed
Hollenberg, M.D. & Cuatrecasas, P. (1975). Insulin and epidermal growth factor. Human fibroblast receptors related to deoxyribonucleic acid synthesis and amino acid uptake. J. Biol. Chem. 250, 38453853.CrossRefGoogle ScholarPubMed
Hollenberg, M.D. & Schneider, E.L. (1979). Receptors for insulin and epidermal growth factor—rogastrone in adult human fibroblasts do not change with donor age. Mech. Age. Dev. 11, 3343.CrossRefGoogle Scholar
Howard, B., Mott, D.M., Fields, R. & Bennett, P. (1979). Insulin stimulation of glucose entry in cultured human fibroblasts. J. Cell. Physiol., 101, 129138.CrossRefGoogle ScholarPubMed
Junker, K. (1980). Inhibition by dexamethasone of the in vitro transport of 3–0-methyl glucose into rat thymocytes. Biochim. Biophys. Acta, 597, 399410.CrossRefGoogle Scholar
Kahlenberg, A. (1969). Lack of stereospecificity of glucose binding to human erythrocyte membrane protein upon reduction with sodium borohydride. Biochem. Biophys. Res. Commun., 36, 690695.CrossRefGoogle ScholarPubMed
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Munck, A. (1971). Glucocorticoid inhibition of glucose uptake by peripheral tissues: old and new evidence, molecular mechanisms, and physiological significance. Perspect. Biol. Med. 14, 265289.CrossRefGoogle ScholarPubMed
Phillips, P.D., Kaji, K. & Cristofalo, V.J. (1984). Progressive loss of the proliferative response of senescing WI-38 cells to platelet-derived growth factor, epidermal growth factor, insulin, transferrin and dexamethasone. J. Gerontol. 39, 1117.CrossRefGoogle ScholarPubMed
Rechler, M.M., Podskalny, J.M., Goldfine, I.D. & Wells, C.A. (1974). DNA synthesis in human fibroblasts: stimulation by insulin and by non-suppressible insulin-like activity (NSILA-S). J. Clin. Endocrinol. Metab. 39, 512521.CrossRefGoogle Scholar
Rechler, M.M., Nissley, S.P., King, G.L., Moses, A.C., Van Obberghen-Schilling, E.E., Romanus, J.A., Knight, A.B., Short, P.A. & White, R.M. (1981). Multiplication stimulating activity (MSA) from the BRL 3A rat liver cell line: relationship to human somatomedins and insulin. J. Supramol. Struct. 15, 411444.Google ScholarPubMed